XHTML(-Print

Draft 0.53

F. D. Wright

Director, Strategic and Technical Alliances

Lexmark International

don@lexmark.com
Melinda Grant

Hewlett-Packard

melinda_grant@hp.com
Peter Zehler

Xerox

peter.zehler@usa.xerox.com
February 1, 2001
Table of Contents

01
Overview

2
References
0
3
XHTML-Print Tags
0
3.1
Tags Required by XHTML-Print
0
3.2
Restrictions on XHTML by XHTML-Print
0
3.3
CSS Conformance
0
4
Application of XHTML/CSS for XHTML-Print
0
4.1
Recommended attributes on the and <object> tags
0
4.2
Style Sheets
0
4.3
Page Breaks
0
4.4
Page Size and Orientation
0
4.4.1
Size Property
0
4.4.2
Margin Property
0
4.4.3
Examples
0
4.4.4
Rendering page boxes that do not fit a target sheet
0
4.4.5
Positioning the page box on the sheet
0
4.5
Running headers and Footers
0
4.6
Inline Image Data
0
4.6.1
Get
0
4.6.2
Inline
0
4.7
Side-by-Side Images
0
5
Conformance
0
5.1
XHTML Document Type Conformance
0
5.2
XHTML Document Conformance
0
5.3
Client Conformance
0
5.4
Printer Conformance
0
5.4.1
Formatting/Rendering Rules
0
5.4.2
Printer Conformance
0
5.5
Advanced Layout Extension
0
6
Work Items
0
Appendix A
JPEG Decoder Requirements
0
A.1
Introduction
0
A.1.1
Intent
0
A.1.2
Objectives
0
A.2
Behaviors of Minimal Printers
0
A.2.1
JPEG processes
0
A.2.2
Handling of APPx markers
0
A.2.3
Color Management
0
A.2.3.1
Greyscale Images
0
A.2.3.2
Color Images
0
A.3
XHTML-Print Advanced Layout Extension
0
A.3.1
Handling of EXIF APP1 and APP2 Markers
0
1
Overview

This section is informative.

This document is intended to specify a simple XHTML based data stream suitable for printing as well as display. It is largely based on the W3C’s XHTML Basic. Its targeted usage is for printing in environments with lightweight and other simple clients that do not have the ability to install a printer specific driver. Throughout this document this data stream is called “XHTML-Print.”

XHTML-Print is designed to be implementable in low-cost printers that may not have a full-page buffer and that generally print from top-to-bottom, left-to-right with the paper in a portrait orientation. For other printers (i.e. those that print in another direction or orientation) a full-page buffer may be required.

XHTML-Print is not to be used when strict layout consistency and repeatability are required. The design goal of XHTML-Print is to provide a relatively simple, broadly supportable print datastream where content preservation and reproduction are the goal, i.e. “Content is King.” More traditional printer datastreams such as PostScript or PCL are more suitable when strict layout control is required.

This document creates a set of conformance criteria for XHTML-Print. It includes style sheet constructs drawn from CSS1/CSS2 and proposed for CSS3 to provide a strong basis for rich printing results without a detailed understanding of each individual printer’s characteristics. It also defines conformance criteria for an optional extension set targeted at photo printing, the XHTML-Print Photo-Imaging Extension.

2 References

This section is informative.

The following definitions and references are used throughout the document.

1. XHTML(1.0: The Extensible HyperText Markup Language. A reformulation of HTML 4.0 as an XML application. See http://www.w3.org/TR/xhtml1
2. XHTML(Basic: A subset of XHTML 1.0 that includes a reduced set of functions. See http://www.w3.org/TR/xhtml-basic
3. Modularization of XHTML(: A document which an abstract modularization of XHTML and an implementation of the abstraction using XML Document Type Definitions (DTDs). This modularization provides a means for subsetting and extending XHTML, a feature needed for extending XHTML's reach onto emerging platforms. See http://www.w3.org/TR/xhtml-modularization
4. XML 1.0: The Extensible Markup Language (XML) is a subset of SGML that is to be served, received, and processed on the Web in the way that is not possible with HTML. XML has been designed for ease of implementation and for interoperability with both SGML and HTML. See http://www.w3.org/TR/REC-xml
5. CSS 1.0: Cascading Style Sheets version 1.0 is a simple style sheet mechanism that allows authors and readers to attach style (e.g. fonts, colors and spacing) to HTML documents. See http://www.w3.org/TR/REC-CSS1
6. CSS 2.0: Cascading Style Sheets version 2.0 build on CSS1 and, with very few exceptions, all valid CSS1 style sheets are valid CSS2 style sheets. CSS2 supports media-specific style sheets so that authors may tailor the presentation of their documents to visual browsers, aural devices, printers, braille devices, handheld devices, etc. CSS2 also adds content positioning, downloadable fonts, table layout, features for internationalization, automatic counters and numbering, and some properties related to user interface. See http://www.w3.org/TR/REC-CSS2/
7. "Namespaces in XML", T. Bray, D. Hollander, A. Layman, 14 January 1999. XML namespaces provide a simple method for qualifying names used in XML documents by associating them with namespaces identified by URI. Available at: http://www.w3.org/TR/REC-xml-names.

8. “Simple Object Access Protocol (SOAP) 1.1” SOAP is a lightweight XML-based protocol for exchange of information in a decentralized, distributed environment. It is a submission to the W3C and is available at http://www.w3.org/TR/SOAP.

9. “Introduction to CSS3” is an introduction and roadmap of the work in progress on CSS level 3. At this time, it is available to W3C members only from: http://www.w3.org/Style/Group/css3-src/css3-roadmap/
10. “RFC 2045 - Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet Message Bodies”, N. Freed, N. Borenstein, Section 6.8. “Base64 Content-Transfer-Encoding” is of particular interest It is available at http://info.internet.isi.edu/in-notes/rfc/files/rfc2045.txt

11. “XML Schema Part 2: Datatypes W3C Working Draft 22 September 2000”, P. Biron, A Malhotra, available at http://www.w3.org/TR/xmlschema-2/

12. “JPEG File Interchange Format, version 1.02, September 1, 1992”, C-Cube Microsystems. Available from ftp://ftp.uu.net/graphics/jpeg/jfif.ps.gz
3 XHTML-Print Tags

This section is normative.

3.1 Tags Required by XHTML-Print

The World Wide Web Consortium has defined a subset of XHTML 1.0 that is targeted to small format devices such as PDAs and cellular telephones. The definition of XHTML-Basic is therefore useful to be examined as a starting point for the definition of XHTML-Print. XHTML-Print is a proper superset of XHTML Basic in the set of tags required.

The Modularization of XHTML [Reference 3 on page 0] is a decomposition of XHTML 1.0 and by reference HTML 4.0 into a collection of abstract modules that provide specific types of functionality. XHTML-Print is defined, in part, by inclusion of a set of these modules. As such, the non-CSS portion of XHTML-Print includes the following modules:

1. Basic Modules

· Structure Module

body, head, html, title

· Basic Text Module

abbr, acronym, address, blockquote, br, cite, code, dfn, div, em,

h1, h2, h3, h4, h5, h6, kbd, p, pre, q, samp, span, strong, var

· Text Extension
b, big, hr, i, small, sub, sup, tt
· Hypertext Module

a

· List Module

dl, dt, dd, ol, ul, li

2. Table Modules

· Basic Table Module

caption, table, td, th, tr

3. Image Module

img

4. Basic Forms Module

form, input, label, select, option, textarea

5. MetaInformation Module

meta

6. Stylesheet Module

style
7. Style Attribute Module

8. Link Module

link

9. Base Module

base

10. Object Module

object

3.2 Restrictions on XHTML by XHTML-Print

XHTML-Print also restricts some usage of common XTHML 1.0 tags in the same way that XHTML Basic does:

· Nesting of Tables is NOT supported

· Frames are NOT supported

3.3 CSS Conformance

See section “Printer Conformance“, section 5.4.2 for CSS conformance requirements for XHTML-Print conforming implementations.

4 Application of XHTML/CSS for XHTML-Print

This section is normative.

XHTML-Print inherits all the structure, encoding and other basic infrastructure specified by XHTML. The following functions are added, have usage restrictions or must be changed (or simply clarified) to meet the needs of printings.

4.1 Recommended attributes on the and <object> tags

Because many printers create the page in a serial manner from top to bottom, it is important for the printer to know the size of images before retrieving the image data itself. This information is then used to create portions of the page layout.

Therefore, the sender is strongly encouraged to include the height and width attributes either within the or the <object> tag, or within an associated style sheet rule. These attributes may be expressed as percentages within the or the <object> tag, or may use the standard absolute or relative units within the CSS rule. Percentages are relative to the parent element and not the page width or printable area. Pixel units should be avoided, because the resultant size may vary markedly, depending on the native resolution of the printer or displaying device.

This document specifies only one mandatory image format, baseline JPEG as defined in 12 on page 0. See Appendix A for a description of JPEG decoder requirements. Printers are not required to support:

· Embedded Thumbnails

· Rotation

· Progressive rendering

within the JFIF files.

4.2 Style Sheets

Conforming XHTML-Print printers shall support both in-line and referenced style sheets within the <style> tag or <link> tag in the <head> of a document. Conforming XHTML-Print printers shall also support the style attributes (i.e. in-line style) when used within the various elements of the documents. Normal cascading rules apply. See section 4.8 of [1} referenced on page 0 for special cases when the style section includes special characters such as “&” and “<”.

4.3 Page Breaks

Because of the differences in displaying in a browser versus a paged media device like a printer, the data source may want to have control of the locations of page breaks. Therefore, a single means is needed to cause a page-break to occur.

Example Page Break using CSS2

<?xml version="1.0"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/TR/xhtml1">

 <head>

 <title> Testing Page Breaks </title>

<style>

.pagebreak { page-break-after: always }

</style>

</head>

 <body>

<p>Page 1 Text</p>

<br class="pagebreak" />

<p>Page 2 Text</p>

 </body>

</html>

Conforming implementations shall support the CSS2 page-break properties. Usage of this property is allowed with
 as well as all other appropriate tags, e.g. <p>, <div>, <h1>, , etc.

If page-break-inside avoid is specified for a long element and the printer is unable to buffer the entire element before committing it to paper, it should force a page break to occur before the long element and begin the element starting at the top of the next page. If the long element starts at the top of a page and exceeds the page length, the printer shall print as much as possible on the first page and then resume that element on the next and subsequent pages as required to preserve the content. A printer is not required to perform scaling to fit the long element on a single page.

4.4 Page Size and Orientation

(The following is a summary and partial extraction from the CSS2 document)

ISSUE: What is the relationship between Page Size and Printable Area?
Page size and orientation are controlled using the @page rules from CSS2. Specifically, the size property is applied to @page to set both size and orientation. The margin properties (‘margin-top’, ‘margin-bottom’, ‘margin-left’, ‘margin-right’, and ‘margin’) as defined by CSS2 also apply within the page context. Page size and orientation provided in the XHTML-Print datastream will override similar attributes contained within any commands and/or attributes provided when creating the print job itself.

4.4.1 Size Property

Usage:

@page {

 size: auto; /* auto is the initial value and uses the default paper */

 }

'size'

 Value: <length>{1,2} | auto | portrait | landscape | inherit

 Initial: auto

 Applies to: the page context

 Inherited: N/A

 Percentages: N/A

 Media: paged

This property specifies the size and orientation of a page box. The size of a page box may either be "absolute" (fixed size) or "relative" (scalable, i.e., fitting available sheet sizes). Relative page boxes allow printers to scale a document and make optimal use of the target size. Three values for the 'size' property create a relative page box:

· auto: The page box will be set to the size and orientation of the target sheet.

· landscape: Overrides the target's orientation. The page box is the same size as the target, and the longer sides are horizontal.

· portrait: Overrides the target's orientation. The page box is the same size as the target, and the shorter sides are horizontal.

4.4.2 Margin Property

The margin property is supported as specified in CSS2, clause 8.3.

4.4.3 Examples

In the following example, the outer edges of the page box will align with the target. The percentage value on the 'margin' property is relative to the target size so if the target sheet dimensions are 21.0cm x 29.7cm (i.e., A4), the margins are 2.10cm and 2.97cm.

 @page {

 size: auto; /* auto is the initial value */

 margin: 10%;

 }

Length values for the 'size' property create an absolute page box. If only one length value is specified, it sets both the width and height of the page box (i.e., the box is a square). Since the page box is the initial containing block, percentage values are not allowed for the 'size' property.

For example:

 @page {

 size: 8.5in 11in portrait; /* width height */

 }

The above example set the width of the page box to be 8.5in and the height to be 11in. The page box in this example requires a target sheet size of 8.5"x11" or larger. Printers may allow users to control the transfer of the page box to the sheet (e.g., rotating an absolute page box that's being printed).

4.4.4 Rendering page boxes that do not fit a target sheet

If a page box does not fit the target sheet dimensions, the printer may choose (in order of preference) to:

· Rotate the page box 90° if this will make the page box fit.

· Scale the page to fit the target.

· Reformat the page (including “spilling” onto another sheet)

· Clip (least preferred)

The printer may consult the user before performing these operations. Lacking “access”
to the user, it may simply make a decision on its own.

4.4.5 Positioning the page box on the sheet

When the page box is smaller than the target size, the user agent is free to place the page box anywhere on the sheet. However, it is recommended that the page box be centered on the sheet since this will align double-sided pages and avoid accidental loss of information that is printed near the edge of the sheet.

4.5 Running headers and Footers

A means is needed to create a running-header and a running-footer on the printed page. Current work in progress by the W3C on paged media defines a very robust method for adding margin boxes to the top, bottom, left and right of the page. A reduced set from the CSS3 proposal is employed, using top and bottom margin boxes via the @page rules method.

ISSUE: CSS3 progress should be tracked and mirrored for this feature.
Utilizing the terminology of CSS2 and CSS3, a ‘margin box’ is defined in conjunction with the ‘page box’ and ‘page area’ (as shown in Figure 1) to create an area into which running-header and running-footer text can be inserted.

CSS3 proposes the ability to left-align, right-align and center the text horizontally as well as methods to top-align, bottom-align and center the text vertically within the margin boxes. For XHTML-Print conforming implementations vertical controls are not required to be supported. Instead, for XHTML-Print conforming implementations, the running-header text may be top aligned in the margin box and the running-footer text may be bottom aligned in the margin box.

CSS3 proposes methods for the printing device to automatically include:

· page number

· total pages in the document

· date

· time

· file name

into the running-header and running-footer. XHTML-Print conforming implementations are only required to support inserting a page number using the “counter(pages)” object. If required, the sending appliance must provide the other information within the text string to be printed in the margin box.

[image: image1.png]non-printable area

page area

Figure 1
The following are sample XHTML/CSS fragments used to create running-headers and running-footers.

<style>

@page {

 @top{font-family: Helvetica, Arial, sans-serif

 font-size: 150%

 font-weight: bolder

 text-align: left

 content: “XHTML-Print: A Proposal --- August 25, 2000”;

 }

 }

</style>

The above example creates a running header that is left aligned at 150% of normal font size and bold in Helvetica, Arial or the default san-serif font whichever is available.

<style>

@page {

 @bottom{font-family: Times, Palatino, serif

 font-size: 80%

 font-weight: normal

 text-align: center

 content: “Page “ counter(pages);

 }

 }

</style>

The above example creates a running footer such as “Page 14” centered on the page in a font 80% of normal size in Times, Palatino or the default serif font whichever is available.
4.6 Inline Image Data

In web-based applications of XHTML, image data is contained in a separate file on the web server that the user agent retrieves. Some low cost, resource constrained clients may want to include images in their print output but cannot afford to include a server. In this case, the image data must be contained in the XHTML-Print file sent to the printer.

This inline image data is treated as “xsd:binary” data type from the XML schema [Reference 11 on page 0]. That is, the image data is treated as a sequence of binary octets that have been encoded to allow inclusion within the XHTML-Print document. Although both hex and base 64 [Reference 10 on page 0] encoding are allowed for “xsd:binary”, XHTML-Print will restrict the encoding to base64.

In XHTML-Print, we are dealing with a stream of base64-encoded bytes traveling over a transport capable of binary data transfers instead of in an Internet Mail message body. Consequently, there are no restrictions placed on line lengths. There is no need for special boundary delimiters since the ‘<’ and ‘>’ characters are not valid characters in the base64 encoding. Inline image transfer is not a recommended practice especially for large images as the encoding inefficiencies of base64 can cause a 33% increase in file size.

The image data included in an XHTML document may take one of three forms.

4.6.1 Get

The first form uses the data attribute of the object element or the src attribute of the img element to reference the URL of the image file that is stored external to the printer. This requires a server on the client capable of delivering the file. (Although the img element has not been deprecated with version XHTML 1.0, the clear preference and direction for the future is for the more flexible object form.)

<object height=”20 mm” width=”20 mm”

 data=”some_image.jpg”

 type=”image/jpeg”>

</object>

Or alternately:

<img height=”20 mm” width=”20 mm”

 src=”some_image.jpg”>

4.6.2 Inline

ISSUE: This section is under review to be replaced by a Multipart/Mime solution.

The second method to inline image data in XHTML-Print is via a forward reference. The declare attribute of the object element is used to define the object, but delay its processing. The id attribute is used to associate the forward reference with the image content, sent at the end of the XHTML-Print document.

<object declare=”declare”

 height=”20 mm” width=”20 mm”

 type=”image/jpeg”

 id=”image_1” >

</object>

. . . .

<object id=”image_1”

 data=””>

</object>

This method may be useful for very simple clients that cannot afford a server for image download but it is not recommended for general use. If the content of the XHTML-Print document spans multiple pages, the printer may not be able to buffer the pages described between the image declaration and the image data description.

(Note: This method may be replaced or augmented by a methodology that uses multi-part MIME related packaging of both the XHTML-Print and the images. The sender may break the XHTML-Print content into chucks in order to place the image data in-line. The printer is to reassemble these XHTML-Print chunks by concatenating them together. Further details may be provided in a subsequent version of this document.)
4.7 Side-by-Side Images

Low-cost printers today often have very little memory into which page data can be stored before being printed. As such, they must build and print the page in swaths on the fly from the top of the page to the bottom. To enable the use of XHTML-Print in these low cost printers, some restrictions on the order of images contained in the XHTML-Print data stream must be added.

1. If two or more images will be even partially side-by-side on the printed page they should be included by reference (or <object data=http://10.10.10.2/images/logo.jpg>) rather than included in-line. This allows the printer to get chunks of the image, as it needs it, as it prints down the page.

2. If the image data is included in-line, an XHTML-Print conforming printer lacking sufficient buffer space to hold multiple side-by-side images may choose to reformat the layout of the page to preserve content. Printers shall attempt to preserve content when encountering side-by-side images that may be impossible to print as specified within the XHTML-Print. Discarding the second and subsequent of the side-by-side images should be avoided unless preservation of content is best achieved by doing so. Other than attempting to best preserve content, this specification DOES NOT mandate any specific behavior when encountering this situation. Clients providing the images in-line should order them from left-to-right, top-to-bottom unless the print direction is known to be otherwise.

5 Conformance

This section is normative.

5.1 XHTML Document Type Conformance

It is possible to modify existing document types and define wholly new document types using both modules defined in this specification and other modules. Such a document type conforms to this specification when it meets the following criteria:

1. The document type must be defined using one of the implementation methods defined by the W3C (currently this is limited to XML DTDs, but XML Schema will be available soon).

2. The document type must have a unique identifier as defined in XHTML-Mod [see page 0] Naming Rules.

3. The document type must include, at a minimum, the Structure, Hypertext, Basic Text, and List modules defined in the XHTML-Mod specification.

4. For each of the W3C-defined modules that are included, all of the elements, attributes, and any required minimal content models must be included (and optionally extended) in the document type’s content model.

5. The document type may define additional elements and attributes. However, these must be in their own XML Namespace [see page 0].

5.2 XHTML Document Conformance

Documents that rely upon XHTML-family document types are considered XHTML conforming if they validate against their referenced document type.

5.3 Client Conformance

1. Clients shall produce a well-formed XHTML document as defined in 1 on page 0.

2. Beyond number 1 above, clients are not required to use more of the XHTML-Print tags or Style Sheet attributes than necessary to get the desired output.

5.4 Printer Conformance

5.4.1 Formatting/Rendering Rules

1. In order to be consistent with the XML 1.0 Recommendation [see page 0], the printer must parse and evaluate an XHTML document to determine if the document is well formed. If the printer claims to be a validating printer, it must also validate documents against their referenced DTDs according to XML. Validation is not required to claim conformance to this standard. A printer may “flush” or otherwise reject a non-conforming XHTML-Print document.

2. When the printer claims to support facilities defined within this specification or required by this specification through normative reference, it must do so in ways consistent with the facilities’ definition.

3. When a printer processes an XHTML document as generic XML, it shall only recognize attributes of type ID (e.g. the id attribute on most XHTML elements) as fragment identifiers.

4. Images:

· If a printer encounters an image in a format it does not support, it will reserve the space specified by the height and width attributes optionally by drawing a box around this space of the size specified for the image.

· If the image format is not supported and the height and width attributes were omitted, the image is omitted and no space is reserved.

· If the image format is supported and the height and width attributes were omitted, the printer may choose to omit the image from the page.

5. If a printer encounters an element it does not recognize, it should render the element’s content as if the element and its end tag were not present at all. Printers may chose not to render content within elements defined by XHTML, HTML or deprecated from HTML which is obviously not intended to be rendered, e.g. <script>.

6. If a printer encounters an attribute it does not recognize, it must ignore the entire attribute specification (i.e., the attribute and its value).

7. If a printer encounters an attribute value it doesn’t recognize, it must use the default attribute value.

8. If a printer encounters an entity reference, e.g. “”, (other than one of the predefined entities) for which the Printer has processed no declaration (which could happen if the declaration is in the external subset which the Printer hasn’t read), the entity reference should be rendered as the characters (starting with the ampersand and ending with the semi-colon) that make up the entity reference.

9. When rendering content, printers that encounter characters or character entity references that are recognized but not renderable should display the document in such a way that it is obvious to the user that normal rendering has not taken place.

10. The following characters are defined in XML as whitespace characters: Space () Tab () Carriage return () Line feed (
). The XML processor normalizes different system’s line end codes into one single line-feed character that is passed up to the application. The XHTML printer in addition, must treat the following characters as whitespace: Form feed () Zero-width space (​) In elements where the ’xml:space’ attribute is set to ’preserve’, the printer must leave all whitespace characters intact (with the exception of leading and trailing whitespace characters, which should be removed). Otherwise, whitespace is handled according to the following rules:

· All whitespace surrounding block elements should be removed.

· Comments are removed entirely and do not affect whitespace handling. One whitespace character on either side of a comment is treated as two white space characters.

· Leading and trailing whitespace inside a block element must be removed.

· Line feed characters within a block element must be converted into a space (except when the ’xml:space’ attribute is set to ’preserve’).

· A sequence of white space characters must be reduced to a single space character (except when the ’xml:space’ attribute is set to ’preserve’).

11. With regard to rendition, the printer should render the content in a manner appropriate to the language in which the content is written. Additionally,
· In languages whose primary script is Latinate, the ASCII space character is typically used to encode both grammatical word boundaries and typographic whitespace.
· In languages whose script is related to Nagari (e.g., Sanskrit, Thai, etc.), grammatical boundaries may be encoded using the ZW ’space’ character, but will not typically be represented by typographic whitespace in rendered output.
· Languages using Arabiform scripts may encode typographic whitespace using a space character, but may also use the ZW space character to delimit ’internal’ grammatical boundaries (what look like words in Arabic to an English eye frequently encode several words, e.g. ’kitAbuhum’ = ’kitAbu-hum’ = ’book them’ == their book).
· Languages in the Chinese script tradition typically neither encode such delimiters nor use typographic whitespace in this way. Whitespace in attribute values is processed according to [XML].
5.4.2 Printer Conformance

· A conforming printer shall support all XHTML Modules listed in clause 3.1 on page 0.

· A conforming printer shall print a static version of a form using default values as specified in the form.

· A conforming printer shall support the following CSS1 constructs:

1. Block item properties:

· Font (font-family, font-style, font-variant, font-weight, font-size)

· Color (both names and RGB value)

· Text decoration (underline, overline, linethrough)

· Text align (left, right, center)

· Text indent

· Line Height

2. Classification Properties

· White-space

· List-style-type (none, disc, circle, square, decimal, lower-alpha, upper-alpha)

· List-style-position

3. Units

· em

· ex

· mm

· inches

· points

· percent

The following CSS2 constructs shall be supported:

1. @media print

2. @page rules

· size

· margin

· :left

· :right

· :first

· crop is NOT required to be supported

· named pages for content placement control is NOT required to be supported

3. Page Break Properties as applied to
 and block elements (e.g. <p></p>, , etc.)

· Page-break-before

· Page-break-after

· Page-break-inside

The page-header and page-footer constructs from the CSS3 proposal shall be supported as described in Section 4.5.

5.5 Advanced Layout Extension

To further support print applications requiring more exacting page layout (e.g., photo album pages), the following additional style sheet properties and image format are required to be supported in an optional, discoverable Advanced Layout Extensions device. If support for this extension is indicated, all of the following must be supported:

1. Box Properties

· margin-top, margin-bottom, margin-right, margin-left, margin

· padding-top, padding-bottom, padding-right, padding-left, padding

· border-top-width, border-bottom-width, border-right-width, border-left-width, border-width

· border-top-color, border-bottom-color, border-right-color, border-left-color, border-color

· border-top, border-bottom, border-right, border-left, border

· position (static, relative, absolute, fixed)

· box offsets (top, bottom, left, right)

· clip

2. Image File Format

· See Appendix A for a description of additional JPEG decoding requirements for this extension.

The following is an example using absolute positioning with image data:

<style>

.picture1 {

 position: absolute;

 top: 25mm;

 left: 25mm;

 padding-top: 10mm;

 width: 30mm;

 height: 30mm;

 clip: rect(10mm, 30mm, 30mm, 0mm)

 }

</style>

…

<div class=”picture1”>

</div>

6 Work Items

This section is informative, temporary and will be removed upon completion.

1. Creation of an XHTML-Print Doctype

2. Creation of an XHTML-Print DTD

Appendix A JPEG Decoder Requirements
A.1 Introduction
A.1.1 Intent

The intent of this appendix is to describe recommended behaviors for JPEG decoders in XHTML-print devices. Behaviors for both minimal printers and photo printers are described. Many of the behaviors described in this document follow directly from language already present in the relevant JPEG standards, but are repeated here to emphasize their importance.

A.1.2 Objectives
 The decoder behaviors described in this document are intended to minimize implementation complexity, while retaining maximum compatibility with existing JPEG files. In particular, these recommendations seek to ensure compatibility with both EXIF and baseline JFIF (i.e. the subset of JFIF files that use only baseline JPEG processes). Support for JPEG streams using non-baseline processes, such as arithmetic coding or progressive coding, is not mandated for XHTML-Print compliance.

A.2 Behaviors of Minimal Printers
This section describes behaviors of JPEG decoders for minimal XHTML-Print implementations.

A.2.1 JPEG processes
A JPEG decoder for an XHTML-Print server must support all baseline JPEG processes. These include grayscale and 3-component images, 8-bit per component sample depth, Huffman entropy coding, 444, 422, and 411 sub-sampling modes, and sequential (i.e. non-progressive) scan.

A.2.2 Handling of APPx markers
Baseline decoders may ignore application-specific markers, such as the JFIF APP0 marker and the EXIF APP1/APP2 markers. This will cause all images to print in an un-rotated orientation, with image size as specified in the JPEG SOF marker. A JPEG decoder for a minimal printer must not fail as a consequence of encountering an unsupported APPx marker (i.e. all such markers must be correctly parsed, even if they are ignored).

A.2.3 Color Management
This section describes a recommended color management approach for minimal JPEG printers

A.2.3.1 Greyscale Images

Sample values in a grayscale (single-component) JPEG image shall be converted to the sRGB color space by setting

Rout= Gout = Bout = Grayin
A.2.3.2 Color Images
Sample values in 3-component JPEG images shall be interpreted as YCbCr samples, as would be obtained by applying the matrices described in ITU BT.601 to sRGB input data.

A.3 XHTML-Print Advanced Layout Extension
This section describes behaviors of JPEG decoders for XHTML-Print devices which support the XHTML-Print Advanced Layout Extension, an optional feature block. The behaviors described below should be interpreted as “in addition to” those described in section 2 (the requirements for minimal XHTML-Print devices).

A.3.1 Handling of EXIF APP1 and APP2 Markers
A JPEG decoder for an XHTML-Print implementation which supports the Advanced Layout Extension must decode the TIFF IFDs embedded in the EXIF APP1 and APP2 markers, as described in Section 2.6.4 of JEIDA-49-1998. The following IFDs must be fully supported (i.e. they may not be ignored).

Tag Name
Field Name
Description

Orientation of Image
Orientation
Sets image orientation in 90-degree increments, and enables transposition.

(XHTML is a trademark of the World Wide Web Consortium.

1
1

