
SBP-2 Printing under existing consumer PC
operating systems

1394 PWG White papers
Rev. 02b, May 13, 1998

Reported by
Fumio Nagasaka (Epson Software Development Laboratory Inc.,)

SBP-2 Printing under existing consumer PC operating systems

ii

Table of Contents

SBP-2 PRINTING UNDER EXISTING CONSUMER PC OPERATING SYSTEMS 1

1. OVERVIEW.. 1

1.1. SCOPE.. 1
1.2. GOAL ... 1
1.3. PURPOSE ... 1

2. REQUIREMENTS FOR SBP-2 PRINTING ... 2

3. NORMATIVE REFERENCES ... 3

3.1. APPROVED REFERENCES... 3
3.2. WDM SPECIFIC TERMINOLOGY .. 3

3.2.1. Connection devices ID ... 3
3.2.2. Device handle names... 3
3.2.3. printer port names .. 3

4. WINDOWS NT5.0 AS EXISTING OPERATING SYSTEM ... 4

4.1. OVERVIEW ... 4
4.2. CONFIGURATION ROM... 4
4.3. LOGICAL UNIT ... 4

4.3.1. LUN and Unit Directory ... 4
4.3.2. Logical_Unit_Number entry.. 5

4.4. CURRENT 1394 DRIVER STACK PROVIDED IN WINDOWS NT5.0 ... 6
4.4.1. Driver stack provided by Windows NT5.0... 6
4.4.2. How does Windows NT5.0 enumerate a SBP-2 target device.................................. 6
4.4.3. Uni-code textual descriptor ... 7
4.4.4. Drawback of SCSIPrint.sys and universal printer driver solution......................... 8

4.5. UNSOLICITED STATUS... 9
4.6. HOW DOES I/O MANAGER ENUMERATE IHV’S CUSTOM DRIVER... 9

4.6.1. Background... 9
4.6.2. Finding 1394 node on the bus ... 9
4.6.3. How does a Port Monitor load the printer driver .. 10

5. BI-DIRECTIONAL COMMUNICATION MODEL... 11

5.1. INITIATOR MODEL .. 11
5.2. TARGET MODEL ... 12
5.3. STATUS BLOCK RETURNED IN UNORDERED EXECUTION ... 13

6. MULTIPLE HOST AND/OR MULTIPLE DEVICE... 14

6.1. MULTIPLE HOST SERVICE WITH SINGLE LUN MODEL.. 14
6.2. MULTIPLE HOST SERVICE WITH DUAL LUN MODEL... 14

7. 1394 PWG AWARE PRINTER DRIVER... 16

7.1. PWG LUN SUPPORT IN WINDOWS NT5.0 SECOND GENERATION..................................... 16
7.2. 1394 FULL FEATURE LUN SUPPORT IN WINDOWS NT6.0.. 17

8. HOW TO LOAD IHV’S PROPRIETARY DRIVERS.. 19

SBP-2 Printing under existing consumer PC operating systems

iii

8.1. BACKGROUND .. 19
8.2. PRIMARY ENUMERATION .. 19
8.3. SECONDARY ENUMERATION ... 19

8.3.1. Generation of the device handle name and FDO (Function Device Object)........... 20
8.3.2. The FDO connection to the device layer .. 20
8.3.3. Getting connected device ID .. 20
8.3.4. Registry update ... 20

8.4. APPLICATION LEVEL PLUG AND PLAY.. 21
8.4.1. Port Enumeration ... 21
8.4.2. Step 1; read keys from the registry .. 21
8.4.3. Step 2; Store Port Monitor’s property .. 21
8.4.4. Step 3; Bind the printer port names with the device handle names. 22
8.4.5. Step 4; Make the new printer port for the new printer .. 22
8.4.6. Step 5; Confirm the connection. .. 22
8.4.7. Step 6; Create the description for the port... 22
8.4.8. Step 7; Notice the enumeration information to the spooler. 23

APPENDIX A. EXAMPLE OF CONFIGURATION ROM OF WINDOWS NT5.0
APPLICABLE PRINTER .. 25

APPENDIX B. SBP-2 LUN .. 29

Table of Figures

Figure 1 Configuration ROM hierarchy.. 4
Figure 2 LUN and Unit Directory ... 5
Figure 3 Logical_Unit _Number entry format.. 5
Figure 4 definition for device_type field.. 6
Figure 5 Driver Stack in Windows NT5.0... 6
Figure 6 Logical_Unit _Number entry format.. 7
Figure 7 Logical_SW _Version entry format... 7
Figure 8 Sample figure of Hardware Wizard.. 8
Figure 9 Windows NT5.0 presents two types of printer driver 8
Figure 10 Normal command block ORB types for bi-d .. 11
Figure 11 ORBs list in an initiator device .. 11
Figure 12 Responsibility of Negotiation ORB and Control ORB 12
Figure 13 Target Model .. 12
Figure 14 Port open / close process.. 14
Figure 15 Status Unit Directory and LUN model.. 14
Figure 16 Two LUN model for Multiple Host service .. 15
Figure 17 Additional driver stack for 1394 PWG aware drivers................................... 16
Figure 18 Protocol stack applicable new protocol drivers ... 17
Figure 19 The registry information recorded by the filter driver 21
Figure 20 The registry information recorded by SBP-2 port monitor 21
Figure 21 The registry information recorded by SBP-2 port monitor 22

SBP-2 Printing under existing consumer PC operating systems

1

1. Overview

1.1. Scope

1394 PWG is continuing effort for standardization of IEEE 1394 Printing Protocol. One of
possible solution which is available under existing consumer PC operating systems is SBP-2
printing. According to this idea, a PC shall act as SBP-2 initiator and printers shall be SBP-2
target devices.

Due to limitation of SBP-2 facilities, printing session between a host device and a printer does
not provide symmetrical service. Asymmetry of service is uncomfortable for peer to peer
printing (or so-called “Direct-printing”) applications. However other PC peripherals including
storage devices and image scanners tend to support SBP-2 protocol for IEEE 1394 platform.
Thus, several consumer PC operating system will provide SBP-2 initiator capability.

To use SBP-2 printers under current consumer PC operating system, this document describes
limited functionality that is provided in current PC operating systems.

1.2. Goal

The SBP-2 Printing Protocol standardization through 1394 PWG shall keep upward
compatibility with existing SBP-2 driver stack. If users are using SBP-2 printer on current PC
OS platform, users may use same SBP-2 printer model after 1394 PWG protocol had been
issued.

This document tries to describe mandatory requirements to cover SBP-2 printing now and
future.

1.3. Purpose

Purpose of this document are listed below:
• To make it possible to print using a printer which has SBP-2 target capabilities, under

existing consumer PC operating systems including Macintosh OS8.x and Windows
NT5.0.

• To support Plug and Play functionality for SBP-2 target device.
• To provide multiple host connectivity
• To support multiple target devices access capability
• To keep upward compatibility between current SBP-2 printing and future SBP-2 printing

SBP-2 Printing under existing consumer PC operating systems

2

2. Requirements for SBP-2 printing

• Bi-directional communication between PCs and printers.
• Unordered execution of SBP-2 ORBs provided in an initiator’s memory space.
• Multiple host devices support capability.
• Multiple target devices connectivity.
• Fare access both from targets and initiators.
• Status service while printing

SBP-2 Printing under existing consumer PC operating systems

3

3. Normative References

3.1. Approved references

ISO/IEC 13213:1994, Control and Status Register (CSR) Architecture for Microcomputer
Buses
IEEE Std. 1394-1995, Standard for a High Performance Serial Bus

References under development
Serial Bus Protocol 2 (SBP-2) Working Draft, X3T10 Project 1155D Rev.3d, March 21, 1998
< ftp://ftp.symbios.com/pub/standards/io/t10/drafts/sbp2/>

Microsoft Plug and Play Design Specification for IEEE�1394 Ver. 1.0b, October 17, 1997
Microsoft Plug and Play Parallel Port Devices Ver. 1.0b March 15, 1996

3.2. WDM Specific terminology

3.2.1. Connection devices ID

An unique ID given by the SBP-2 target devices on IEEE1394 high performance serial bus.
Each Logical unit of a SBP-2 target shall have at lease one textual descriptor (1284 PnP ID +
GUID) in it’s IEEE 1212 Configuration ROM. The textual descriptor shall be contained in
Unit_Leaf -> Unit_Dependent_Leaf -> Textual_Descriptor.
Also Operating System of the SBP-2 initiator device may use "node_vender_ID (24bits)" and
"Chip ID (40bits)" to generate unique reference number for the SBP-2 target.

3.2.2. Device handle names

The name which SBP-2 Port driver create. Any user mode application may invoke
CreateFile() function with this device handle name, to open access path to the specified IEEE
1394 device.
An IEEE1394 Filter driver including SBP-2 Port driver gives device handle name for each FDO
(Function Device Object). I/O Manager is responsible to allow user mode application to access
FDO, utilizing device handle name.

3.2.3. printer port names

The printer port name given by the port monitor application. Any user application may access
to the printer utilizing printer port name. User may review printer port names using "addition
WIZARD of printer" which has graphical user interface.

SBP-2 Printing under existing consumer PC operating systems

4

4. Windows NT5.0 as existing Operating System

4.1. Overview

Windows NT5.0 is proving IEEE 1394 printer through SBP-2 Port driver. This means any 1394
printer which is applicable under NT5.0 is required to perform SBP-2 target functionality.
However NT5.0 does not provide full functionality for all expected future extension of SBP-2
target. This clause describes what is required for SBP-2 target devices under NT5.0.

4.2. Configuration ROM

Each SBP-2 target device is required to have configuration ROM according to SBP-2
specification.

Figure 1 Configuration ROM hierarchy

4.3. Logical Unit

4.3.1. LUN and Unit Directory

Windows NT5.0 is supporting only one Logical Unit Number (LUN) for one Unit Directory.
Printing session from a SBP-2 initiator need to invoke “Login” to start session. And Login is
associated a LUN. Normally each LUN allows an initiator to Login at a time. (see Appendix A.)

Each LUN is enumerated as stand alone device associated with its own driver stack. If any
IHV provides their own Unit Directory and LUN which does not have specific device_type
defined by Windows NT5.0, they need to install their proprietary driver stack, and their LUN
will appear as if it is an independent hardware unit.

The following figure shows the relation ship of Unit Directories and LUNs under NT5.0.

Bus information
Block

Root directory

Root directory

Root
leaf

Unit directory

Unit directory

Unit dependent
directory

Unit
leaf

Unit
leaf

Unit
leaf

Unit
leaf

Root
leaf

Root
leaf

SBP-2 Printing under existing consumer PC operating systems

5

Figure 2 LUN and Unit Directory

4.3.2. Logical_Unit_Number entry

The Logical_Unit_Number entry is an immediate entry that, when present in unit directory,
specifies the peripheral device type and logical unit number of a logical unit implemented by
the target.

most significant
lun1416 rsrvd device_type

least significant

Figure 3 Logical_Unit _Number entry format

The value 0 to 0x1E indicate the device_type is command set dependent. The value 0x1F
indicates unknown device type. The 1394 PWG supportive target shall have at least one of the
value listed in the table below.

value Name Description

0x00 DIRECT_ACCESS_DEVICE disks

0x01 SEQUENTIAL_ACCESS_DEVICE tapes

0x02 PRINTER_DEVICE printers

0x03 PROCESSOR_DEVICE scanners, printers, etc

0x04 WRITE_ONCE_READ_MULTIPLE_DEVICE worms

0x05 READ_ONLY_DIRECT_ACCESS_DEVICE cdroms

0x06 SCANNER_DEVICE scanners

0x07 OPTICAL_DEVICE optical disks

0x08 MEDIUM_CHANGER jukebox

0x09 COMMUNICATION_DEVICE networks

0x1F UNKNOWN_DEVICE reserved for future standardization

Root

Unit Directory Unit Directory

LUN LUN

SBP-2 Printing under existing consumer PC operating systems

6

Figure 4 definition for device_type field

4.4. Current 1394 Driver Stack provided in Windows NT5.0

4.4.1. Driver stack provided by Windows NT5.0
The figure shown below outlines device drivers stack provided in Windows NT5.0.

Figure 5 Driver Stack in Windows NT5.0

The upper side API of SBP-2 Port Driver is hidden from ISV or IHV developer. Instead of
direct access to SBP-2 port, Windows NT5.0 is providing SBP-2 Class drivers including SCSI
Print whose file name is “SCSIPrint.sys”. Even though the name of SCSIPrint.sys includes
“SCSI”, SCSIPrint.sys does not require a target device to speak SCSI commands.
SCSIPrint.sys is providing IOCTL_SCSI_PASS_THROUGH mode. Thus any vender may use
it as if it acts a filter to pass data to SBP-2 Port Driver.

4.4.2. How does Windows NT5.0 enumerate a SBP-2 target device

This section describes what is required in the configuration ROM of the target printer.
Any NT5.0 supportive SBP-2 target device shall provide Unit_Spec_ID entry and
Unit_SW_Version entry according to the SBP-2 specification. These entries are shown below.

Disk

SBP-2 Class Drivers

CD-ROM SCSI Scan
SCSI Print

Class Drivers

SBP-2 Port Driver

Port Drivers

1394 Class Driver

OHCI Mini Driver Other Mini Driver
Bus Drivers

OHCI Hardware Adaptec and Sony cards

Hardware

SCSI PASS Through

SBP-2 Printing under existing consumer PC operating systems

7

most significant

00609E161216

least significant

 Figure 6 Logical_Unit _Number entry format

most significant

010483161316

least significant

Figure 7 Logical_SW _Version entry format

The IEEE 1394 Bus Class driver of Windows NT5.0 enumerates configuration ROM of every
target device after bus reset had been caused. When the IEEE 1394 Bus Class driver finds a
SBP-2 target, it loads the SBP-2 Port driver automatically. Then the SBP-2 Port driver reads
Logical_Unit_Numer entry of unit in the SBP-2 target. If the device_type field of the target has
a value 0x02, the SBP-2 Port driver loads SCSIPrint.sys.

4.4.3. Uni-code textual descriptor

Also an unit directory of the SBP-2 target shall have an uni-code textual descriptor which
contains 1284 PnP id string. The minimum requirements for reporting device ID's are as
described in Section 6.6 of the IEEE 1284 specification. Specifically, these are (case
sensitive): MANUFACTURER, COMMAND SET, and MODEL. (The abbreviations: MFG,
CMD, and MDL are acceptable, as described in the IEEE 1284 specification). The COMMAND
SET field was ignored under Windows 95.

Windows NT5.0 specifies the name of a suitable universal printer driver examining the
manufacture name and model name of the printer, which in this case, is a SBP-2 target device
enumerated by the IEEE 1394 Bus Class driver. Normally Hardware Wizard installs
application level driver automatically.

SBP-2 Printing under existing consumer PC operating systems

8

Figure 8 Sample figure of Hardware Wizard

4.4.4. Drawback of SCSIPrint.sys and universal printer driver solution

As described in previous section, Windows NT5.0 presents universal driver solution. For the
IEEE 1394 printer, NT5.0 uses SBP-2 Port driver and “SCSIPrint.sys” which is a sort of SBP-2
Class driver. Also any IHV may provide proprietary protocol driver so-called “Custom Printer
Driver”. However in latter case, user needs to find IHV’s driver from FDD, CD or Web site.

Printer Driver Type Developer Description

Universal Driver Microsoft User does not need to insert FDD nor
CD

Custom Driver Printer Vender

Custom drivers are only loaded when
user inserts FDD or CD utilizing

Hardware Wizard utility, then INF file is
referred to install new driver on to OS

Figure 9 Windows NT5.0 presents two types of printer driver

Unfortunately, due to requirements for ease to use and may be due to too generalized method

SBP-2 Printing under existing consumer PC operating systems

9

for driver development, Universal Printer Drivers has several limitation. Three important
drawbacks of Universal Printer Drivers are listed below;

1. Universal Printer Drivers do not use reverse directional communication.
2. Universal Printer Drivers which use “SCSIPrint.sys” do not support multiple host
connectivity.
n Software implementation of a target would solve this problem.
n SCSIPrint.sys itself does not prevent reverse directional data flow

3. Universal Printer Drivers which use “SCSIPrint.sys” prevent a Status Monitor application
program to access same LUN of the target device, while a Spooler application is printing.
n Software implementation of a target would solve this problem.

4.5. Unsolicited status

The specification of SBP-2 is defining a functionality so-called “unsolicited status”. However
the current SBP-2 Port Driver does not support unsolicited status from a target device.

The 1394 PWG printing profile (Rev. 0.31, May 6,1998) is requesting that “No device-specific
or service-specific information shall be carried in the unsolicited status message”. As the
realistic solution, IHVs shall choose, target architecture which does not require to issue
unsolicited status, even though they provide proprietary SBP-2 Class driver over Microsoft’s
SBP-2 Port driver.

4.6. How does I/O Manager enumerate IHV’s Custom Driver

4.6.1. Background

If universal printer drivers have some limitation, one possible solution to solve this problem is
to develop custom driver. Naturally IHVs are required to distribute their own printer driver
products and INF files using FDD, CD or Web site.

From NT5.0 operating system’s point of view, loading custom drivers has two scheme. First
scheme loads device drivers and second scheme determine the name of the suitable printer
driver and load it. The action taken by second step shall be described from port monitor side.

The following section outlines how each software works when a printer device is plugged in
the IEEE 1394 bus.

4.6.2. Finding 1394 node on the bus

Enumerating occurs in the IEEE1394 bus class driver when a 1394 printer is plugged in. The
adding process of the enumerated device were executed in IEEE1394 Filter driver. One
possible example of the IEEE 1394 Filter driver is SBP-2 Port driver developed by Microsoft
.The access to a target device through I/O manager becomes possible after the device adding
process in "IEEE1394 Filter Driver" had been taken. Furthermore, the individual printer
information that was connected to IEEE1394 Bus is also stored in registry. A device name
including textual descriptor from Configuration ROM of the 1394 device will be written as the
key of registry.

SBP-2 Printing under existing consumer PC operating systems

10

4.6.3. How does a Port Monitor load the printer driver

After device level program found a 1394 node on the bus, A “Port Monitor” user mode
application may invoke SetupDiEnumDeviceInterfaces() API to enumerate the target 1394
printer.
Through enumeration process, the port monitor generates the printer port name
(PrinterPnP01,PrinterPnP02....) corresponding to each printer. And the port monitor returns
enumerating information with this port name to spooler. This enumerating information is
displayed as an applicable printer port name with the "addition WIZARD of printer". A user
application may invoke CreateFile() API specifying the parameter which contains this printer
port name. Then this application may access the target device utilizing WriteFile() or
ReadFile() APIs.

SBP-2 Printing under existing consumer PC operating systems

11

5. Bi-directional Communication Model

Windows NT5.0 and it’s existing driver stack including SBP-2 Port driver provides full
duplex, bi-directional communication capability between an initiator device and a target
device utilizing unordered ORB processing model. Data transfer in a specific direction is
accomplished in order that the ORBs are placed on the list with respect to that direction.

An initiator shall place at least one control ORB which is one special purpose input ORB to
solicit the target to report buffer requirement for next reverse directional data session. Also
the initiator shall place negotiation ORB which is on special purpose output ORB to inform
buffer space, when the initiator only can provide smaller space than requested space, as
input buffer.

5.1. Initiator Model

Initiators shall provide four types of normal command bock ORBs shown below;

Figure 10 Normal command block ORB types for bi-d

Figure 11 ORBs list in an initiator device

Normal Command
Block ORB

Data session
input ORB

Data session
output ORB

Control ORB
(input ORB)

Negotiation ORB
(output ORB)

Dummy ORB

Negotiation ORB

Control ORB
notify bit ==1

Data session
output ORB

Data session
input ORB

Output data buffer

Input data buffer

STATUS FIFO

status queue

SBP-2 Printing under existing consumer PC operating systems

12

An initiator device shall place at least a Negotiation ORB, a Control ORB and some data
session ORBs in the linked list of ORBs. Data session out put ORB shall have a pointer
points an output buffer.

Negotiation ORB is an output ORB which shall be responsible to grant credit for the target
device in forward data session, and be responsible to issue credit request to the target
device in reverse data session.

Control ORB is an input ORB which shall be responsible to receive credit granted for the
initiator device from the target device, in forward data session, and be responsible to
receive credit request from the initiator device in reverse data session.

The size of output data and the length of the output buffer is determined according to the
input credit from the target device. And the size of the input buffer is limited by the credit
issued from the initiator to the target. The size of received data will be informed when the
target device consumed Control ORB and returned STATUS BLOCK to the initiator.

Direction of data Negotiation ORB Control ORB

forward data session
Initiator à Target Issue credit request Receive granted credit

reverse data session
Target à Initiator Grant credit Receive requested credit

Figure 12 Responsibility of Negotiation ORB and Control ORB

5.2. Target Model

A target device may skip execution of requested ORB, when it is an input ORB and write
queue does not have any request to write to the initiator. The target shall consume Control
ORB at the end of one data session, and shall be responsible to report buffer space kept in
current state.

Figure 13 Target Model

Target Agent write queue

read queue

C
lient Layer

1394 B
us T

ransaction

Credit Base
Transport

Unordered
execution

SBP-2 Printing under existing consumer PC operating systems

13

5.3. Status Block returned in unordered execution

In unordered execution model, an initiator easily cause critical section if an initiator
removes outstanding ORBs from the list. Thus, a target device is responsible to return
status block with suitable information in it’s src field.

When the src filed has value zero, the target has knowledge for a subsequent ORB to be
fetched, and the ORB will never be fetched by the target. Thus the initiator may reuse or
de-allocate it.

When the src field has value one, the target does not know the address of a subsequent
ORB, until the initiator pings the door bell. And the ORB will be fetched again after the
initiator pings the door bell. Because the target needs to read next_ORB field from this
ORB. Thus the initiator shall not reuse or de-allocate it, until the target returns completion
status for subsequent ORBs.

SBP-2 Printing under existing consumer PC operating systems

14

6. Multiple Host and/or Multiple Device

6.1. Multiple Host service with single LUN model

This section describes, how SCISPrint.sys (or PnPprint.sys) and SBP-2 Port driver under
Windows NT5.0 can provide multiple host connectivity within only one LUN in a target
device.

Figure 14 Port open / close process

Under this environment, an user mode application called Port Monitor shall be responsible
to open and close connection to the target device LUN 0, at each printing session. The
“SBP-2 Port” filter device object (Filter DO) creates PnPprint.sys function device object
(FDO), then this FDO invokes “Query Login” to the specific target. The result is kept in the
registry, and the FDO returns this result, when the Port Monitor opened the port. If the Port
Monitor got result which say “port is busy”, the Port Monitor is required to close port as
soon as possible, and retry to open same port several seconds later, until it receives
successful result.

This mechanism avoid conflict of duplicated access to one LUN in the specific target
device.

6.2. Multiple Host service with dual LUN model

One of simple and effective idea to service multiple host connectivity is to provide two Unit
Directories and two LUNs which is associated to each Unit Directory.

Figure 15 Status Unit Directory and LUN model

SBP-2 Port Filter DO

Step 1: Creates FDO

Step 2: Query Login

Step 3: Is in Use / idle
PnPprint.sys

FDO

Port Monitor

Port Status busy / ready

Step 4: store port status

T
arget interface

Step 5: open / close port

LUN 0

root

Unit Directory Unit Directory

Printing LUN 0 Status LUN 0

SBP-2 Printing under existing consumer PC operating systems

15

Figure 16 Two LUN model for Multiple Host service

The Status LUN allows short status session for initiator devices. An initiator may reserve
Login to the printing session utilizing the Status LUN. The Status LUN returns allowance to
login to the Printing LUN, if the Printing LUN is in idle state.

Otherwise, if the Printing LUN is occupied by other initiator device, then the Status LUN
remember a time stump which notes when this initiator requested first contact to the
printing session. The Status LUN does not provide “login solicitation” capability. Instead of
this capability, the Status LUN returns the tome constant for this initiator to retry login to
Status LUN.

If several initiator is trying to connect to the Printing LUN of a specific target, the first
initiator receives most shortest retry time constant in seconds. And the initiator which had
requested next to the first one receives shorter time constant than other initiators. If the
Printing LUN become to be free, the STATUS LUN returns allowance to login to the Printing
LUN.

Host A

Status Monitor

Port Monitor

Host B

Status Monitor

Port Monitor

S
tatus session

Target

Status LUN Print LUN

Login
Status

Logout

Login

Printing

Logout

Login

Status

Logout

Login

SBP-2 Printing under existing consumer PC operating systems

16

7. 1394 PWG aware Printer Driver

7.1. PWG LUN support in Windows NT5.0 second generation

Figure 17 Additional driver stack for 1394 PWG aware drivers

The figure illustrated above shows additional driver stack which expected to be available after
Windows NT5.0 Service Release. The SBP-2 Port driver shall be responsible when
Logical_Unit_Number entry of Configuration ROM has device_type field as value 0x0C.

To support this architecture, a printer vender shall provide new unit directory which is
associated with “STATUS LUN”, in their 1394 target device. And Microsoft shall choose one of
these solution listed below;
1) develop “PWG LUN Controller” protocol driver as one of the “SBP-2 Class”.
2) open API sets of “SBP-2 Port driver” to encourage IHVs to develop their proprietary 1394

PWG aware “LUN Controller” SBP-2 Class driver.

User Mode

Kernel Mode

Spooler PWG status monitor

SCSIPrint.sys or
PnPprint.sys

SBP-2 Port driver

IEEE 1394 Bus Class driver

mini port

PWG LUN
Controller

Target Node

root

Unit Directory

Printing LUN
device_type =0x02

STATUS LUN
device_type = 0x0C

Unit Directory

Initiator side

Target side

load if
device_type
 == 0x02

load if
device_type
 == 0x0C

SBP-2 Printing under existing consumer PC operating systems

17

7.2. 1394 full feature LUN support in Windows NT6.0

Figure 18 Protocol stack applicable new protocol drivers

PWG-C or DSIWG/1394 TA is going to standardize new symmetrical 1394 printing protocol.
To make this protocol driver available under next Windows NT (may be 6.0), PWG-C or
DSIWG is responsible to determine Unit_Spec_ID and Unit_SW_Version. These values are
required for “1394 Bus Class Driver” to find correct target device and to load suitable device
drivers.

Also, any IHV who is going to provide these protocol drivers, is responsible to ship target
device which has an Unit Directory associated with DPP LUN.

DPP Application

User Mode

Kernel Mode

Spooler
PWG status monitor

SCSIPrint.sys or
PnPprint.sys

SBP-2 Port driver

IEEE 1394 Bus Class driver

mini port

PWG LUN
Controller

Target Node

root

Printing LUN STATUS LUN

Initiator side

Target side

DPP or
something new

Unit DirectoryUnit Directory

DPP LUN

Unit Directory

Conventional port
2nd generation port

SBP-2 Printing under existing consumer PC operating systems

18

SBP-2 Printing under existing consumer PC operating systems

19

8. How to load IHV’s proprietary drivers

8.1. Background

An IHV will be required to provide mechanism to install their own driver stack, if they are
going choose other IEEE 1394 protocol like DPP or something new, instead of SBP-2 Port
driver and SCSIPrint.sys which is available in Windows NT5.0. Or any IHV may use both
SCSIPrint.sys and their proprietary driver simultaneously. As an assumption, the
SCSIPrint.sys would be good enough to perform simple printing session, and IHV’s
protocol driver shall be responsible to report status of the target device and be responsible
connection management to support multiple host connectivity.

The following sections describe how NT5.0 I/O manager and drivers know what shall be
loaded while enumeration process has been begun.

8.2. Primary Enumeration

The I/O manager controls “1394 Bus Class Driver” to enumerate 1394 bus device. This
enumeration shall be completed before an IEEE 1394 Filter Driver starts PnP process. One
of well known example of the “IEEE 1394 Filter Driver” is “SBP-2 Port Driver” which was
mentioned in previous section.

The following shows job steps taken in primary enumeration phase;

1. 1394 Bus Reset occurs.
2. MS's 1394 Bus Class Driver (1394 BUS) enumerates the buses

Reads every node’s “Configuration ROM”.
Configures all logical unit’s “PnP ID” from “Configuration ROM” information,

3. Search “1394 PnP ID” in “HKEY_LOCAL_MACHINE\Enum\1394”
if “PnP ID” is found , goto step 6
if “PnP ID” is not found, goto step 4

4. Creates driver database from “.inf” files in “Windows\inf”
5. Search “PnP ID” from the ID information of the driver database

if found, create a key whose name is same as “PnP ID” in
HKEY_LOCAL_MACHINE\Enum\1394.
if not found, prompt to user “insert floppy disk”.

6. The I/O manager writes the driver information key name in
KEY_LOCAL_MACHINE\Enum\1394\[PnP_id]\Class.
7. The I/O manager writes the driver name(eg.PrntFilt.sys) that was loaded by this driver in
KEY_LOCAL_MACHINE\System\CurrentControlSet\Services\Class\[driver information key
name]\NTMPDriver contains.

8.3. Secondary Enumeration

I/O manager calls “PnPAddDevice” API of “IEEE1394 Filter Driver” when a 1394 target
printer was detected on the bus. The following sections outline job steps of “IEEE1394
Filter Driver” associated “PnPAddDevice” API call.

SBP-2 Printing under existing consumer PC operating systems

20

8.3.1. Generation of the device handle name and FDO (Function Device Object)

Generates the device handle name required by a user mode application to access the
device. The unique device name including GUID is generated by Bus Class Driver which is
Physical Device Object (PDO). Or Bus Class Driver may create a device object without
specific name. Then IoCreateDevice() API is used to generate FDO.

8.3.2. The FDO connection to the device layer

The generated FDO is connected to a device layer. IoAttchDeviceToDeviceStack() API
binds generated FDO to lower level PDO. These steps are shown below;

NTSTATUS AddDevice(IN PDRIVER_OBJECT DriverObject,
IN PDRIVER_OBJECT pdo)

{
PDEVICE_OBJECT fdo; // function device object
NTSTATUS status;
status = IoCreateDevice(DriverObject,

sizeof(DEVICE_EXTENSION), NULL,
FILE_DEVICE_UNKNOWN, 0, FALSE,
&fdo);

if (!NT_SUCCESS(status))
return status;

PDEVICE_EXTENSION pdx = (PDEVICE_EXTENSION)fdo->DeviceExtension;
status = IoRegisterDeviceInterface(pdo,

&GUID_PWG,
NULL,
&pdx->ifname);

if (!NT_SUCCESS(status)) {
IoDeleteDevice(fdo);
return status;
}

IoSetDeviceInterfaceState(&pdx->ifname, TRUE);
pdx->LowerDeviceObject = IoAttchDeviceToDeviceStack(fdo, pdo);
fdo->Flags &= ~DO_DEVICE_INITIALIZING;
return STATUS_SUCCESS;
}

8.3.3. Getting connected device ID

Textual Descriptor of the devices which was found on 1394 bus is extracted from
Configuration ROM. The Textual Descriptor shall contain unique device identifier that can
distinguish a node from other nodes, also shall contain some information to specify
applicable higher level drivers. From this point of view, a "1284 PnP ID" and GUID shall be
included in this Textual Descriptor.

8.3.4. Registry update

Registry shall keep information involved with relationship between devices ID and device
handle name. This information will be changed when the IEEE1394 bus enumerating has
been processed. The port monitor reads data from the registry listed below. The port

SBP-2 Printing under existing consumer PC operating systems

21

monitor binds devices ID with device handle name.

position in registry HKLM\SOFTWARE\Epson\IEEE1394\Driver\

registry key
and value

Key = device handle’s name (including GUID)
Value = Textual Descriptor (1284 PnP ID + GUID + Serial number)
Or Configuration ROM 8byte(64bit) ID (Vender ID 3byte ,chip ID
5byte)

8.4. Application level Plug and Play

8.4.1. Port Enumeration

A Port Monitor enumerates the printer ports on IEEE 1394 bus, when the spooler starts up.
Then it reports results to the spooler. For example, the standard local port monitor
enumerates LPT1, LPT2, COM1, COM2, FILE as the local ports. The spooler keeps
information returned from the Port Monitor and the printer ports are displayed as the
available printer ports on "Add Printer Wizard".

8.4.2. Step 1; read keys from the registry

Get the data structure which describes relationship between the device handle's names
and the device IDs from the specific position of the registry listed below. This data structure
is enumerated by "IEEE 1394 Filter Driver". The port monitor can search the device
handle's name using the known device ID.

position in registry HKLM\SOFTWARE\Epson\IEEE1394\Driver\

registry key
and value

Key = device handle's name, prtntXX.
Value= Configuration ROM 8byte(64bit) ID or the unique value based
on it

Figure 19 The registry information recorded by the filter driver

8.4.3. Step 2; Store Port Monitor’s property

The Port Monitor generates the registry key to store binding information for printer port
names and device IDs. The port monitor always shall assign the same printer as the same
port name, utilizing this information.

position in registry HKLM\SOFTWARE\Epson\IEEE1394\Monitor\

registry key
and value

Entry name = printer port name. For example, ep1394prnXX
Device ID key = Configuration ROM 8byte(64bit) ID

Figure 20 The registry information recorded by SBP-2 port monitor

SBP-2 Printing under existing consumer PC operating systems

22

The key of the device handle name is involved with the device handle name that could be
changed at every time. Also the status key shall be involved with the printer port which
could be changed at every time.

For example,
�� HKLM\SOFTWARE\Epson\IEEE1394\Monitor\ep1394prn01\
�� HKLM\SOFTWARE\Epson\IEEE1394\Monitor\ep1394prn01\ID� 1234

8.4.4. Step 3; Bind the printer port names with the device handle names.

Now the printer port names is associated with the device handle names, through the device
ID as intermediary name. Thus the Port Monitor can open the driver and print to the IEEE
1394 printer associated with the printer port name.

8.4.5. Step 4; Make the new printer port for the new printer

When detected printer was completely new, the name would not be resolved within step 3,
then the printer port for it shall be created from scratch.

The printer port name is created whenever the new printer is connected, for example
ep1394prn01, ep1394prn02, ep1394prn03. After the port name was created, the data
structure which describes relationship between the printer port names and the device IDs is
recorded in the registry. Thus, the same port name is always assigned for the same printer.

position in registry HKLM\SOFTWARE\Epson\IEEE1394\Monitor\

registry key
and value

Entry name = printer port name. For example, ep1394prnXX
Device ID key = Configuration ROM 8byte(64bit) ID

Figure 21 The registry information recorded by SBP-2 port monitor

8.4.6. Step 5; Confirm the connection.

Confirm whether or not the printer is connected actually. To do that, the port monitor calls
CreateFile() to all printer ports that it knows. The results will be stored in the registry.

8.4.7. Step 6; Create the description for the port.

The port monitor creates the port description for every printer port. The Port Monitor has
the data structure listed below, which contains the pointer to the next description. So the
port descriptions are kept as the linked list. The created description will be returned as a
port handle to the spooler, when the Port Monitor invokes OpenPort() API to open
connection.

// The definition of the port description
// For SBP2 Port Monitor
typedef struct _INIPORT {

SBP-2 Printing under existing consumer PC operating systems

23

// basic information

DWORD signature; // signature
// value to check the validity of the handle.

DWORD cb; // the size for port description including the string size.

// link information

struct _INIPORT *pNext; // the pointer to the next port description

// port information

LPWSTR pPortName; // port name
DWORD Status; // port status
LPWSTR pDeviceHandleName; // device handle name
LPWSTR pDeviceID; // device ID
DWORD JobId; // print job ID

// port control to Write and Read

HANDLE pIventHandle; // This is used when the Callback for WritePort() waits.
 // This is set by WritePort().
DWORD dwWriteTimeout;
DWORD dwReadTimeout;

// The control information for SBP2

SBP2SESSION sbp2; // SBP2 session specific information
 // This is set in StartDocPort().

} INIPORT, *PINIPORT;

8.4.8. Step 7; Notice the enumeration information to the spooler.

The port monitor stores the enumerated data into the port-information-structure;
PORT_INFO, then returns the pointer to the arrangement of the port-information-structure
to the spooler. The spooler displays the list of the ports on "Add Printer Wizard" window,
using this data structure.

/***********************
 *
 * function: LocalmonEnumPorts
 *
 * purpose: Enumerate printer ports
 *
 * arguments: LPTSTR pName = not used
 * DWORD Level = structure level
 * LPBYTE pPorts = spooler data structure
 * DWORD cbBuf = size of spooler structure passed in
 * LPDWORD pcbNeeded = size of spooler structure required
 * LPDWORD pcReturned = number of entries returned
 *
 *
 * returns: pPorts, pcbNeeded, bpcReturned

SBP-2 Printing under existing consumer PC operating systems

24

 *
 */

BOOL WINAPI LocalmonEnumPorts(
 LPTSTR pName,
 DWORD Level,
 LPBYTE pPorts,
 DWORD cbBuf,
 LPDWORD pcbNeeded,
 LPDWORD pcReturned
)
{

… IHV Programming …
}

SBP-2 Printing under existing consumer PC operating systems

25

Appendix A. Example of Configuration ROM of Windows NT5.0
applicable printer

The following shows an example Configuration ROM which is including NT5.0 supportive
textual descriptor with 1284 PnP ID.

/* value no add comment */
/* Bus information block */

0x045ecd53, /* 1 400 length of configurationROM & all CRC */
0x31333934, /* 2 404 ASCII strings “1394”. */
0x50327000, /* 3 408 bit 31 : 0 = capable of isocronous

resource manager.
bit 30 : 1 = capable of cycle master.
bit 29 : 0 = isochronous supported.
bit 28 : 1 = bus manager supported.
bit 27-24 : reserved
bit 23-16 : 32h = cycle
clock accuracy
(must be FF with no cycle master support)
bit 15-12 : 128 = max record size.
bit 11-0 : reserved. */
0x000048FF, /* 4 40c Vendor ID value 000048 and Chip ID value
FF00000001 */
0x00000001, /* 5 410 */
/* Root directory. */

0x000434a7, /* 6 414 length of Root directory & CRC */
0x03000048, /* 7 418 Module vendor ID. Value is 000048. */
0x0c008380, /* 8 41c bit 24-16 : reserved.

bit 15 : 1=SPLIT_TIMEOUT
register is implemented.
bit 14 :
1=messages-passing registers are implemented.
bit 13 :
1=INTERRUPT_TARGET and INTERRUPT_MASK registers are implemented.
bit 12 : 1=ARGUMENT registers are implemented.
bit 11 : 1=Node implements TEST_START&TEST_STATUS registers and testing state.
bit 10 : 1=Node implementes the private space.
bit 9 : 1=Node uses
64-bit addressing
bit 8 : 1=Node uses the fixed addressing scheme.
bit 7 :
1=STATE_BITS.lost bit is implemented.
bit 6 :
1=STATE_BITS.dreq bit is implemented.
bit 5 : 1=Reserved. = 0.
bit 4 :
1=STATE_BITS.elog bit and ERROR_LOG registers are implemented.
bit 3 :
1=STATE_BITS.atn bit is implemented.
bit 2 :
1=STATE_BITS.off bit is implemented.
bit 1 : 1=Node supports the dead state.

SBP-2 Printing under existing consumer PC operating systems

26

bit 0 : 1=Node supports
the initializing state. */

0x8d000002, /* 9 420 Node unique ID leaf offset. */
0xd1000004, /* 10 424 Unit directory No.1 offset. (used to

transmit data to device medium) */
/* Node unique ID leaf. */

0x00022ddc, /* 11 428 length of leaf & CRC */
0x000048FF, /* 12 42c */
0x00000001, /* 13 430 serial number */

/* Vendor ID and Chip ID.
*/
/* Unit directory. (No.1) */

0x0009aa02, /* 14 434 length of Unit directory & CRC */
0x1200609e, /* 15 438 Unit spec ID ?? */
0x13010483, /* 16 43c unit_sw_version (target conforms to

SBP-2). */
0x38000000, /* 17 440 command_set_spec_ID. */
0x39000000, /* 18 444 command_set. */
0x3b000000, /* 19 448 command_set_version. */
0x54004000, /* 20 44c csr_offset (MANAGEMENT_AGENT register is

at FFFF F001 0000). */
0x3a400a08, /* 21 450 logical_unit_characteristics.

bit 23 : queuing bit
(task management model is SBP-2).
bit 22 : ordered bit (executes all tasks in order).
bit 21 : isochronous bit (does not support)
bit 20-16 : reserved. bit 15-8 :
login_timeout (500x10 milliseconds).
bit 7-0 : ORB_size (8
quadlets). */

0x14020000, /* 22 454 logical unit number. */
0xd4000001, /* 23 458 Unit dependent directory offset. */

/* Unit dependent directory */
0x00049bae, /* 24 45c Unit dependent directory length & CRC */
0x81000004, /* 25 460 vender key(Unicode) offset */
0x81000009, /* 26 464 vender key(ascii) offset */
0x8200000d, /* 27 468 model key(Unicode) offset */
0x82000030, /* 28 46c model key(ascii) offset */

/* Vendor Leaf(Unicode) */
0x00058cce, /* 29 470 vendor Leaf(Unicode) length & CRC */
0x80000000, /* 30 474 vendor spec ID */
0x00000409, /* 31 478 vendor language ID */
0x45005000, /* 32 47c vendor text “EPSON “ */
0x53004f00, /* 33 480 */
0x4e000000, /* 34 484 */

/* Vendor Leaf(ascii) */
0x000452da, /* 35 488 vendor Leaf(Ascii) length & CRC */
0x00000000, /* 36 48c vendor spec ID */
0x00000000, /* 37 490 vendor language ID */
0x4550534f, /* 38 494 vendor text “EPSON “ */
0x4e000000, /* 39 498 */

/* Model Leaf(Unicode) */

SBP-2 Printing under existing consumer PC operating systems

27

0x00235621, /* 40 49c model Leaf(Unicode) length & CRC */
0x80000000, /* 41 4a0 model spec ID */
0x00000409, /* 42 4a4 model language ID */
0x4d004600, /* 43 4a8 model text

“MFG:EPSON;CMD:ESCPL2E,PRPXL,BDC;MDL:Stylus COLOR 800;CLS:PRINTER;”. */
0x47003a00, /* 44 4ac */
0x45005000, /* 45 4b0 */
0x53004f00, /* 46 4b4 */
0x4e003b00, /* 47 4b8 */
0x43004d00, /* 48 4bc */
0x44003a00, /* 49 4c0 */
0x45005300, /* 50 4c4 */
0x43005000, /* 51 4c8 */
0x4c003200, /* 52 4cc */
0x45002c00, /* 53 4d0 */
0x50005200, /* 54 4d4 */
0x50005800, /* 55 4d8 */
0x4c002c00, /* 56 4dc */
0x42004400, /* 57 4e0 */
0x43003b00, /* 58 4e4 */
0x4d004400, /* 59 4e8 */
0x4c003a00, /* 60 4ec */
0x53007400, /* 61 4f0 */
0x79006c00, /* 62 4f4 */
0x75007300, /* 63 4f8 */
0x20004300, /* 64 4fc */
0x4f004C00, /* 65 500 */
0x4f005200, /* 66 504 */
0x20003800, /* 67 508 */
0x30003000, /* 68 50c */
0x3b004300, /* 69 510 */
0x4c005300, /* 70 514 */
0x3a005000, /* 71 518 */
0x52004900, /* 72 51c */
0x4e005400, /* 73 520 */
0x45005200, /* 74 524 */
0x3b000000, /* 75 528 */

/* Model Leaf(ascii) */
0x0013c813, /* 76 52c model Leaf(Ascii) length & CRC */
0x00000000, /* 77 530 model spec ID */
0x00000000, /* 78 534 model language ID */

 0x4d46473a, /* 79 538 model text
“MFG:EPSON;CMD:ESCPL2E,PRPXL,BDC;MDL:Stylus COLOR 800;CLS:PRINTER;”. */

0x4550534f, /* 80 53c */
0x4e3b434d, /* 81 540 */
0x443a4553, /* 82 544 */
0x43504c32, /* 83 548 */
0x452c5052, /* 84 54c */
0x50584c2c, /* 85 550 */
0x4244433b, /* 86 554 */
0x4d444c3a, /* 87 558 */
0x5374796c, /* 88 55c */

SBP-2 Printing under existing consumer PC operating systems

28

0x75732043, /* 89 560 */
0x4f4C4f52, /* 90 564 */
0x20383030, /* 91 568 */
0x3b434c53, /* 92 56c */
0x3a505249, /* 93 570 */
0x4e544552, /* 94 574 */
0x3b000000, /* 95 578 */

SBP-2 Printing under existing consumer PC operating systems

29

Appendix B. SBP-2 LUN

SBP-2 Spec Rev.3d

p27
The exclusive bit (abbreviated as x in the figure above) shall specify target behavior with
respect to concurrent login to a logical unit. When exclusive is zero, the target, subject to its
own implementation capabilities, may permit more than one initiator to login to a logical unit. If
exclusive is one the target shall permit only one login to a logical unit at a time; see 8.2 for a
description of target behavior.

p56
The target shall perform the following steps (in any order) to validate a login request:

• The target shall read the initiator’s unique ID, EUI-64, from the bus information block
by means of two quadlet read transactions. The source_ID from the write transaction
used to signal the login ORB to the target’s MANAGEMENT_AGENT register shall be
used as the destination_ID in the quadlet read transactions;

• The target shall determine whether or not the initiator already owns a login by
comparing the EUI-64 just obtained against the login_owner_EUI_64 for all
login_descriptors. If the initiator is currently logged-in to the same logical unit, the
login request shall be rejected with an sbp_status of access denied;

• If the exclusive bit is set in the login ORB and there are any active login_descriptors
for the logical unit, the target shall reject the login request with an sbp_status of
access denied;

• If an active login_descriptor with the exclusive attribute exists for the lun specified in
the login ORB, the target shall reject the login request with an sbp_status of access
denied;

• Else the target shall determine if a free login_descriptor is available and, if none are
available, reject the login request with an sbp_status of resources unavailable.

� end of file�

