Job Monitoring MIB, V0.843
(This cover page is not part of the Internet-Draft)

From:	Tom Hastings
Date:		07/2114/97
Version:	0.843
File:		ftp://ftp.pwg.org/pub/jmp/mibs/jmp-mib.doc .pdf jmp-mibr.doc .pdf .pdr
Status:	SeventhSixth draft MIB that corresponds to editorial comments on V0.83 and changes to keep in alignment with IPP (printer-resolution syntax). the changes agreed to at the JMP meeting, on Friday, 6/27/97. The major changes were to move the jobOwner attribute to the jmJobTable, so that no attributes are MANDATORY. However, we agreed to restore Ron's requirement that an attribute SHALL be implemented, if the server or device implements the corresponding functionality and it is available to the agent. We also deleted the deviceAlertCode attribute since it is in the Printer MIB. We deleted the timeSinceXxxx attributes since they can be computed from other attributes.
We agreed to make the random number and sequential numbers in the jmJobSubmissionID be last, so that a partial ID could be specified in a GetNext and step through all jobs with the same more significant part of jmJobSubmissionID. Harry and I had an action item about the use of IMPLIED and its interaction with such a specification. We have agreed that making jmJobSubmissionID fixed length with trailing spaces before the 8-digit number works with V1 and V2, since no length tag shall be present for fixed length. See the change history in the separate file: changes.doc .pdf.
We agreed that the MIB specification is finished except for any editorial comments that people may have. We resolved all PWG issues. I've included Ron Bergman's and David Perkin's extensive editorial comments. A small number ofThree issues came from IETF reviewers (David Perkins and Ron Bergman), which have not been resolved. See the separate issues.doc and .pdf file.
I've also produced a variation on this document which has all variable font (jmp-mibv.doc .pdf) without revision marks. This is the version that the JMP should use to make comments. It has line numbers.
The MIB has been greatly simplified so that now there are only 18 objects in the MIB. There are 65 attributes.
I've removed the issues from the document and placed them in a separate document: issues.doc .pdf. There are very few issues remaining. I've added a few issues from the e-mail since the last meeting.
�INTERNET-DRAFT	Ron Bergman
Dataproducts Corp.
Tom Hastings
Xerox Corporation
Scott Isaacson
Novell, Inc.
Harry Lewis
IBM Corp.
July 1997

Job Monitoring MIB - V0.843
<draft-ietf-printmib-job-monitor-042.txt>
Expires Jan 2114, 1997

Status of this Memo
This document is an Internet-Draft. Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts.
Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."
To learn the current status of any Internet-Draft, please check the "1id-abstracts.txt" listing contained in the Internet-Drafts Shadow Directories on ftp.is.co.za (Africa), nic.nordu.net (Europe), munnari.oz.au (Pacific Rim), ds.internic.net (US East Coast), or ftp.isi.edu (US West Coast).
Abstract
This Internet-Draft specifies a small set of read-only18 SNMP MIB objects for (1) monitoring the status and progress of print jobs (2) obtaining resource requirements before a job is processed, (3) monitoring resource consumption while a job is being processed and (4) collecting resource accounting data after the completion of a job. This MIB is intended to be implemented (1) in a printer or (2) in a server that supports one or more printers. Use of the object set is not limited to printing. However, support for services other than printing is outside the scope of this Job Monitoring MIB. Future extensions to this MIB may include, but are not limited to, fax machines and scanners.
�
TABLE OF CONTENTS
� TOC \o "1-5" \f �1. Introduction	� GOTOBUTTON _Toc393218650 � PAGEREF _Toc393218650 �9��
1.1 Types of Information in the MIB	� GOTOBUTTON _Toc393218651 � PAGEREF _Toc393218651 �9��
1.2 Types of Job Monitoring Applications	� GOTOBUTTON _Toc393218652 � PAGEREF _Toc393218652 �10��
2. Terminology and Job Model	� GOTOBUTTON _Toc393218653 � PAGEREF _Toc393218653 �11��
2.1 System Configurations for the Job Monitoring MIB	� GOTOBUTTON _Toc393218654 � PAGEREF _Toc393218654 �14��
2.1.1 Configuration 1 - client-printer	� GOTOBUTTON _Toc393218655 � PAGEREF _Toc393218655 �14��
2.1.2 Configuration 2 - client-server-printer - agent in the server	� GOTOBUTTON _Toc393218656 � PAGEREF _Toc393218656 �15��
2.1.3 Configuration 3 - client-server-printer - client monitors printer agent and server	� GOTOBUTTON _Toc393218657 � PAGEREF _Toc393218657 �16��
3. Managed Object Usage	� GOTOBUTTON _Toc393218658 � PAGEREF _Toc393218658 �18��
3.1 Conformance Considerations	� GOTOBUTTON _Toc393218659 � PAGEREF _Toc393218659 �18��
3.1.1 Conformance Terminology	� GOTOBUTTON _Toc393218660 � PAGEREF _Toc393218660 �18��
3.1.2 Agent Conformance Requirements	� GOTOBUTTON _Toc393218661 � PAGEREF _Toc393218661 �18��
3.1.2.1 MIB II System Group objects	� GOTOBUTTON _Toc393218662 � PAGEREF _Toc393218662 �19��
3.1.2.2 MIB II Interface Group objects	� GOTOBUTTON _Toc393218663 � PAGEREF _Toc393218663 �19��
3.1.2.3 Printer MIB objects	� GOTOBUTTON _Toc393218664 � PAGEREF _Toc393218664 �19��
3.1.3 Job Monitoring Application Conformance Requirements	� GOTOBUTTON _Toc393218665 � PAGEREF _Toc393218665 �19��
3.2 The Job Tables and the Oldest Active and Newest Active Indexes	� GOTOBUTTON _Toc393218666 � PAGEREF _Toc393218666 �20��
3.3 The Attribute Mechanism	� GOTOBUTTON _Toc393218667 � PAGEREF _Toc393218667 �21��
3.3.1 Conformance of Attribute Implementation	� GOTOBUTTON _Toc393218668 � PAGEREF _Toc393218668 �22��
3.3.2 Useful, 'Unknown', and 'Other' Values for Objects and Attributes	23
3.3.3 Data Sub-types and Attribute Naming Conventions	� GOTOBUTTON _Toc393218670 � PAGEREF _Toc393218670 �23��
3.3.4 Single-Value (Row) Versus Multi-Value (MULTI-ROW) Attributes	� GOTOBUTTON _Toc393218671 � PAGEREF _Toc393218671 �24��
3.3.5 Requested Attributes	� GOTOBUTTON _Toc393218672 � PAGEREF _Toc393218672 �24��
3.3.6 Consumption Attributes	� GOTOBUTTON _Toc393218673 � PAGEREF _Toc393218673 �24��
3.3.7 Index Value Attributes	� GOTOBUTTON _Toc393218674 � PAGEREF _Toc393218674 �24��
3.4 Job Identification	� GOTOBUTTON _Toc393218675 � PAGEREF _Toc393218675 �25��
3.5 Internationalization Considerations	� GOTOBUTTON _Toc393218676 � PAGEREF _Toc393218676 �25��
3.6 IANA Considerations	� GOTOBUTTON _Toc393218677 � PAGEREF _Toc393218677 �26��
3.6.1 IANA Registration of enums	� GOTOBUTTON _Toc393218678 � PAGEREF _Toc393218678 �26��
3.6.1.1 Type 1 enumerations	� GOTOBUTTON _Toc393218679 � PAGEREF _Toc393218679 �26��
3.6.1.2 Type 2 enumerations	� GOTOBUTTON _Toc393218680 � PAGEREF _Toc393218680 �26��
3.6.1.3 Type 3 enumeration	� GOTOBUTTON _Toc393218681 � PAGEREF _Toc393218681 �27��
3.6.2 IANA Registration of type 2 bit values	� GOTOBUTTON _Toc393218682 � PAGEREF _Toc393218682 �27��
3.6.3 IANA Registration of Job Submission Id Formats	� GOTOBUTTON _Toc393218683 � PAGEREF _Toc393218683 �27��
3.6.4 IANA Registration of MIME types/sub-types for document-formats	� GOTOBUTTON _Toc393218684 � PAGEREF _Toc393218684 �28��
3.7 Security Considerations	� GOTOBUTTON _Toc393218685 � PAGEREF _Toc393218685 �28��
3.7.1 Read-Write objects	� GOTOBUTTON _Toc393218686 � PAGEREF _Toc393218686 �28��
3.7.2 Read-Only Objects In Other User's Jobs	� GOTOBUTTON _Toc393218687 � PAGEREF _Toc393218687 �28��
3.8 Values for Objects	� GOTOBUTTON _Toc393218688 � PAGEREF _Toc393218688 �22��
3.9 Notification-s	� GOTOBUTTON _Toc393218689 � PAGEREF _Toc393218689 �28��
4. MIB specification	� GOTOBUTTON _Toc393218690 � PAGEREF _Toc393218690 �29��
Textual conventions for this MIB module	� GOTOBUTTON _Toc393218691 � PAGEREF _Toc393218691 �31��
JmTimeStampTC - simple time in seconds	� GOTOBUTTON _Toc393218692 � PAGEREF _Toc393218692 �31��
JmJobSourcePlatformTypeTC - operating system platform definitions	� GOTOBUTTON _Toc393218693 � PAGEREF _Toc393218693 �31��
JmFinishingTC - device finishing definitions	� GOTOBUTTON _Toc393218694 � PAGEREF _Toc393218694 �32��
JmPrintQualityTC - print quality	� GOTOBUTTON _Toc393218695 � PAGEREF _Toc393218695 �34��
JmPrinterResolutionTC - printer resolution	� GOTOBUTTON _Toc393218696 � PAGEREF _Toc393218696 �34��
JmTonerEconomyTC - toner economy setting	� GOTOBUTTON _Toc393218697 � PAGEREF _Toc393218697 �35��
JmBooleanTC - Boolean value	� GOTOBUTTON _Toc393218698 � PAGEREF _Toc393218698 �36��
JmMediumTypeTC - medium type definitions	� GOTOBUTTON _Toc393218699 � PAGEREF _Toc393218699 �36��
JmJobSubmissionIDTypeTC - job submission ID type definitions	� GOTOBUTTON _Toc393218700 � PAGEREF _Toc393218700 �37��
JmJobStateTC - job state definitions	� GOTOBUTTON _Toc393218701 � PAGEREF _Toc393218701 �40��
JmAttributeTypeTC - attribute type definitions	� GOTOBUTTON _Toc393218702 � PAGEREF _Toc393218702 �42��
other (Int32(-2..) and/or Octets63)	� GOTOBUTTON _Toc393218703 � PAGEREF _Toc393218703 �43��
Job State attributes	� GOTOBUTTON _Toc393218705 � PAGEREF _Toc393218705 �43��
jobStateReasons2 (JmJobStateReasons2TC)	� GOTOBUTTON _Toc393218706 � PAGEREF _Toc393218706 �43��
jobStateReasons3 (JmJobStateReasons3TC)	� GOTOBUTTON _Toc393218707 � PAGEREF _Toc393218707 �43��
jobStateReasons4 (JmJobStateReasons4TC)	� GOTOBUTTON _Toc393218708 � PAGEREF _Toc393218708 �44��
processingMessage (Octets63)	� GOTOBUTTON _Toc393218709 � PAGEREF _Toc393218709 �44��
Job Identification attributes	� GOTOBUTTON _Toc393218710 � PAGEREF _Toc393218710 �44��
jobAccountName (Octets63)	� GOTOBUTTON _Toc393218711 � PAGEREF _Toc393218711 �44��
serverAssignedJobName (Octets63)	� GOTOBUTTON _Toc393218712 � PAGEREF _Toc393218712 �44��
jobName (Octets63)	� GOTOBUTTON _Toc393218713 � PAGEREF _Toc393218713 �44��
jobServiceTypes (JmJobServiceTypesTC)	� GOTOBUTTON _Toc393218714 � PAGEREF _Toc393218714 �45��
jobSourceChannelIndex (Int32(0..))	� GOTOBUTTON _Toc393218715 � PAGEREF _Toc393218715 �46��
jobSourcePlatformType (JmJobSourcePlatformTypeTC)	� GOTOBUTTON _Toc393218716 � PAGEREF _Toc393218716 �46��
submittingServerName (Octets63)	� GOTOBUTTON _Toc393218717 � PAGEREF _Toc393218717 �46��
submittingApplicationName (Octets63)	� GOTOBUTTON _Toc393218718 � PAGEREF _Toc393218718 �46��
jobOriginatingHost (Octets63)	� GOTOBUTTON _Toc393218719 � PAGEREF _Toc393218719 �46��
deviceNameRequested (Octets63)	� GOTOBUTTON _Toc393218720 � PAGEREF _Toc393218720 �46��
queueNameRequested (Octets63)	� GOTOBUTTON _Toc393218721 � PAGEREF _Toc393218721 �46��
physicalDevice (hrDeviceIndex and/or Octets63)	� GOTOBUTTON _Toc393218722 � PAGEREF _Toc393218722 �47��
numberOfDocuments (Int32(-2..))	� GOTOBUTTON _Toc393218723 � PAGEREF _Toc393218723 �47��
fileName (Octets63)	� GOTOBUTTON _Toc393218724 � PAGEREF _Toc393218724 �47��
documentName (Octets63)	� GOTOBUTTON _Toc393218725 � PAGEREF _Toc393218725 �47��
jobComment (Octets63)	� GOTOBUTTON _Toc393218726 � PAGEREF _Toc393218726 �47��
documentFormatIndex (Int32(0..))	� GOTOBUTTON _Toc393218727 � PAGEREF _Toc393218727 �48��
documentFormat (PrtInterpreterLangFamilyTC and/or Octets63)	� GOTOBUTTON _Toc393218728 � PAGEREF _Toc393218728 �48��
Job Parameter attributes	� GOTOBUTTON _Toc393218729 � PAGEREF _Toc393218729 �48��
jobPriority (Int32(1..100))	� GOTOBUTTON _Toc393218730 � PAGEREF _Toc393218730 �48��
jobProcessAfterDateAndTime (DateAndTime)	� GOTOBUTTON _Toc393218731 � PAGEREF _Toc393218731 �49��
jobHold (JmBooleanTC)	� GOTOBUTTON _Toc393218732 � PAGEREF _Toc393218732 �49��
jobHoldUntil (Octets63)	� GOTOBUTTON _Toc393218733 � PAGEREF _Toc393218733 �49��
outputBin (Int32(0..) and/or Octets63)	� GOTOBUTTON _Toc393218734 � PAGEREF _Toc393218734 �49��
sides (Int32(-2..2))	� GOTOBUTTON _Toc393218735 � PAGEREF _Toc393218735 �50��
finishing (JmFinishingTC)	� GOTOBUTTON _Toc393218736 � PAGEREF _Toc393218736 �50��
Image Quality attributes (requested and used)	� GOTOBUTTON _Toc393218737 � PAGEREF _Toc393218737 �50��
printQualityRequested (JmPrintQualityTC)	� GOTOBUTTON _Toc393218738 � PAGEREF _Toc393218738 �50��
printQualityUsed (JmPrintQualityTC)	� GOTOBUTTON _Toc393218739 � PAGEREF _Toc393218739 �50��
printerResolutionRequested (JmPrinterResolutionTC)	� GOTOBUTTON _Toc393218740 � PAGEREF _Toc393218740 �50��
printerResolutionUsed (JmPrinterResolutionTC)	� GOTOBUTTON _Toc393218741 � PAGEREF _Toc393218741 �50��
tonerEcomonyRequested (JmTonerEconomyTC)	� GOTOBUTTON _Toc393218742 � PAGEREF _Toc393218742 �50��
tonerEcomonyUsed (JmTonerEconomyTC)	� GOTOBUTTON _Toc393218743 � PAGEREF _Toc393218743 �50��
tonerDensityRequested (Int32(-2..100))	� GOTOBUTTON _Toc393218744 � PAGEREF _Toc393218744 �50��
tonerDensityUsed (Int32(-2..100))	� GOTOBUTTON _Toc393218745 � PAGEREF _Toc393218745 �51��
Job Progress attributes (requested and consumed)	� GOTOBUTTON _Toc393218746 � PAGEREF _Toc393218746 �51��
jobCopiesRequested (Int32(-2..))	� GOTOBUTTON _Toc393218747 � PAGEREF _Toc393218747 �51��
jobCopiesCompleted (Int32(-2..))	� GOTOBUTTON _Toc393218748 � PAGEREF _Toc393218748 �51��
documentCopiesRequested (Int32(-2..))	� GOTOBUTTON _Toc393218749 � PAGEREF _Toc393218749 �51��
documentCopiesCompleted (Int32(-2..))	� GOTOBUTTON _Toc393218750 � PAGEREF _Toc393218750 �51��
jobKOctetsTransferred (Int32(-2..))	� GOTOBUTTON _Toc393218751 � PAGEREF _Toc393218751 �52��
Impression attributes (requested and consumed)	� GOTOBUTTON _Toc393218752 � PAGEREF _Toc393218752 �52��
impressionsSpooled (Int32(-2..))	� GOTOBUTTON _Toc393218753 � PAGEREF _Toc393218753 �52��
impressionsSentToDevice (Int32(-2..))	� GOTOBUTTON _Toc393218754 � PAGEREF _Toc393218754 �52��
impressionsInterpreted (Int32(-2..))	� GOTOBUTTON _Toc393218755 � PAGEREF _Toc393218755 �52��
impressionsCompletedCurrentCopy (Int32(-2..))	� GOTOBUTTON _Toc393218756 � PAGEREF _Toc393218756 �52��
fullColorImpressionsCompleted (Int32(-2..))	� GOTOBUTTON _Toc393218757 � PAGEREF _Toc393218757 �53��
highlightColorImpressionsCompleted (Int32(-2..))	� GOTOBUTTON _Toc393218758 � PAGEREF _Toc393218758 �53��
Page attributes (requested and consumed)	� GOTOBUTTON _Toc393218759 � PAGEREF _Toc393218759 �53��
pagesRequested (Int32(-2..))	� GOTOBUTTON _Toc393218760 � PAGEREF _Toc393218760 �53��
pagesCompleted (Int32(-2..))	� GOTOBUTTON _Toc393218761 � PAGEREF _Toc393218761 �53��
pagesCompletedCurrentCopy (Int32(-2..))	� GOTOBUTTON _Toc393218762 � PAGEREF _Toc393218762 �53��
Sheet attributes (requested and consumed)	� GOTOBUTTON _Toc393218763 � PAGEREF _Toc393218763 �54��
sheetsRequested (Int32(-2..))	� GOTOBUTTON _Toc393218764 � PAGEREF _Toc393218764 �54��
sheetsCompleted (Int32(-2..))	� GOTOBUTTON _Toc393218765 � PAGEREF _Toc393218765 �54��
sheetsCompletedCurrentCopy (Int32(-2..))	� GOTOBUTTON _Toc393218766 � PAGEREF _Toc393218766 �54��
Resource attributes (requested and consumed)	� GOTOBUTTON _Toc393218767 � PAGEREF _Toc393218767 �54��
mediumRequested (JmMediumTypeTC and/or Octets63)	� GOTOBUTTON _Toc393218768 � PAGEREF _Toc393218768 �54��
mediumConsumed (Octets63)	� GOTOBUTTON _Toc393218769 � PAGEREF _Toc393218769 �54��
colorantRequested (Int32(-2..) and/or Octets63)	� GOTOBUTTON _Toc393218770 � PAGEREF _Toc393218770 �55��
colorantConsumed (Int32(-2..) and/or Octets63)	� GOTOBUTTON _Toc393218771 � PAGEREF _Toc393218771 �55��
Time attributes (set by server or device)	� GOTOBUTTON _Toc393218772 � PAGEREF _Toc393218772 �55��
jobSubmissionToServerTime (JmTimeStampTC and/or DateAndTime)	� GOTOBUTTON _Toc393218773 � PAGEREF _Toc393218773 �56��
jobSubmissionTime (JmTimeStampTC and/or DateAndTime)	� GOTOBUTTON _Toc393218774 � PAGEREF _Toc393218774 �56��
jobStartedBeingHeldTime (JmTimeStampTC and/or DateAndTime)	� GOTOBUTTON _Toc393218775 � PAGEREF _Toc393218775 �56��
jobStartedProcessingTime (JmTimeStampTC and/or DateAndTime)	� GOTOBUTTON _Toc393218776 � PAGEREF _Toc393218776 �56��
jobCompletedTime (JmTimeStampTC and/or DateAndTime)	� GOTOBUTTON _Toc393218777 � PAGEREF _Toc393218777 �56��
jobProcessingCPUTime (Int32(-2..))	� GOTOBUTTON _Toc393218778 � PAGEREF _Toc393218778 �56��
JmJobServiceTypesTC - bit encoded job service type definitions	� GOTOBUTTON _Toc393218779 � PAGEREF _Toc393218779 �58��
JmJobStateReasons1TC - additional information about job states	� GOTOBUTTON _Toc393218780 � PAGEREF _Toc393218780 �60��
JmJobStateReasons2TC - More additional information about job states	� GOTOBUTTON _Toc393218781 � PAGEREF _Toc393218781 �63��
JmJobStateReasons3TC - More additional information about job states	� GOTOBUTTON _Toc393218782 � PAGEREF _Toc393218782 �67��
JmJobStateReasons4TC - More additional information about job states	� GOTOBUTTON _Toc393218783 � PAGEREF _Toc393218783 �68��
The General Group (MANDATORY)	� GOTOBUTTON _Toc393218784 � PAGEREF _Toc393218784 �69��
jmGeneralJobSetIndex (Int32(1..32767))	� GOTOBUTTON _Toc393218785 � PAGEREF _Toc393218785 �69��
jmGeneralNumberOfActiveJobs (Int32(0..))	� GOTOBUTTON _Toc393218786 � PAGEREF _Toc393218786 �70��
jmGeneralOldestActiveJobIndex (Int32(0..))	� GOTOBUTTON _Toc393218787 � PAGEREF _Toc393218787 �70��
jmGeneralNewestActiveJobIndex (Int32(0..))	� GOTOBUTTON _Toc393218788 � PAGEREF _Toc393218788 �71��
jmGeneralJobPersistence (Int32(15..))	� GOTOBUTTON _Toc393218789 � PAGEREF _Toc393218789 �71��
jmGeneralAttributePersistence (Int32(15..))	� GOTOBUTTON _Toc393218790 � PAGEREF _Toc393218790 �71��
jmGeneralJobSetName (Octets63)	� GOTOBUTTON _Toc393218791 � PAGEREF _Toc393218791 �72��
The Job ID Group (MANDATORY)	� GOTOBUTTON _Toc393218792 � PAGEREF _Toc393218792 �72��
jmJobSubmissionID (OCTET STRING(SIZE(48)))	� GOTOBUTTON _Toc393218793 � PAGEREF _Toc393218793 �73��
jmJobIDJobSetIndex (Int32(1..32767))	� GOTOBUTTON _Toc393218794 � PAGEREF _Toc393218794 �74��
jmJobIDJobIndex (Int32(1..))	� GOTOBUTTON _Toc393218795 � PAGEREF _Toc393218795 �74��
The Job Group (MANDATORY)	� GOTOBUTTON _Toc393218796 � PAGEREF _Toc393218796 �75��
jmJobIndex (Int32(1..))	� GOTOBUTTON _Toc393218797 � PAGEREF _Toc393218797 �76��
jmJobState (JmJobStateTC)	� GOTOBUTTON _Toc393218798 � PAGEREF _Toc393218798 �76��
jmJobStateReasons1 (JmJobStateReasons1TC)	� GOTOBUTTON _Toc393218799 � PAGEREF _Toc393218799 �76��
jmNumberOfInterveningJobs (Int32(-2..))	� GOTOBUTTON _Toc393218800 � PAGEREF _Toc393218800 �77��
jmJobKOctetsRequested (Int32(-2..))	� GOTOBUTTON _Toc393218801 � PAGEREF _Toc393218801 �77��
jmJobKOctetsProcessed (Int32(-2..))	� GOTOBUTTON _Toc393218802 � PAGEREF _Toc393218802 �78��
jmJobImpressionsRequested (Int32(-2..))	� GOTOBUTTON _Toc393218803 � PAGEREF _Toc393218803 �78��
jmJobImpressionsCompleted (Int32(-2..))	� GOTOBUTTON _Toc393218804 � PAGEREF _Toc393218804 �78��
jmJobOwner (Octets63)	� GOTOBUTTON _Toc393218805 � PAGEREF _Toc393218805 �79��
The Attribute Group (MANDATORY)	� GOTOBUTTON _Toc393218806 � PAGEREF _Toc393218806 �79��
jmAttributeTypeIndex (JmAttributeTypeTC)	� GOTOBUTTON _Toc393218807 � PAGEREF _Toc393218807 �81��
jmAttributeInstanceIndex (Int32(1..32767))	� GOTOBUTTON _Toc393218808 � PAGEREF _Toc393218808 �81��
jmAttributeValueAsInteger (Int32(-2..))	� GOTOBUTTON _Toc393218809 � PAGEREF _Toc393218809 �82��
jmAttributeValueAsOctets (Octets63)	� GOTOBUTTON _Toc393218810 � PAGEREF _Toc393218810 �82��
5. Appendix A - Implementing the Job Life Cycle	� GOTOBUTTON _Toc393218811 � PAGEREF _Toc393218811 �86��
6. APPENDIX B - Support of the Job Submission ID in Job Submission Protocols	� GOTOBUTTON _Toc393218812 � PAGEREF _Toc393218812 �86��
6.1 Hewlett-Packard's Printer Job Language (PJL)	� GOTOBUTTON _Toc393218813 � PAGEREF _Toc393218813 �87��
6.2 ISO DPA	� GOTOBUTTON _Toc393218814 � PAGEREF _Toc393218814 �87��
7. References	� GOTOBUTTON _Toc393218815 � PAGEREF _Toc393218815 �87��
8. Author's Addresses	� GOTOBUTTON _Toc393218816 � PAGEREF _Toc393218816 �88��
9. INDEX	� GOTOBUTTON _Toc393218817 � PAGEREF _Toc393218817 �92��
�
�Job Monitoring MIB
Introduction
The Job Monitoring MIB is intended to be implemented by an agent within a printer or the first server closest to the printer, where the printer is either directly connected to the server only or the printer does not contain the job monitoring MIB agent. It is recommended that implementations place the SNMP agent as close as possible to the processing of the print job. This MIB applies to printers with and without spooling capabilities. This MIB is designed to be compatible with most current commonly-used job submission protocols. In most environments that support high function job submission/job control protocols, like ISO DPA[iso-dpa], those protocols would be used to monitor and manage print jobs rather than using the Job Monitoring MIB.
The Job Monitoring MIB consists of a 7-object General Group, a 2-object Job Submission ID Group, a 7-object Job Group, and an 2-object Attribute Group. Each group is a table. All accessible objects are read-only. The General Group contains general information that applies to all jobs in a job set. The Job Submission ID table maps the job submission ID that the client uses to identify a job to the jmJobIndex that the Job Monitoring Agent uses to identify jobs in the Job and Attribute tables. The Job table contains the MANDATORY integer job state and status objects. The Attribute table consists of multiple entries per job that specify (1) job and document identification and parameters, (2) requested resources, and (3) consumed resources during and after job processing/printing. Sixty five job attributes are defined as textual conventions that an agent SHALL return if the server or device implements the functionality so represented and the agent has access to the information.
Types of Information in the MIB
The job MIB is intended to provide the following information for the indicated Role Models in the Printer MIB[print-mib] (Appendix D - Roles of Users).
User:
Provide the ability to identify the least busy printer. The user will be able to determine the number and size of jobs waiting for each printer. No attempt is made to actually predict the length of time that jobs will take.
Provide the ability to identify the current status of the user's job (user queries).
Provide a timely indication that the job has completed and where it can be found.
Provide error and diagnostic information for jobs that did not successfully complete.
Operator:
Provide a presentation of the state of all the jobs in the print system.
Provide the ability to identify the user that submitted the print job.
Provide the ability to identify the resources required by each job.
Provide the ability to define which physical printers are candidates for the print job.
Provide some idea of how long each job will take. However, exact estimates of time to process a job is not being attempted. Instead, objects are included that allow the operator to be able to make gross estimates.
Capacity Planner:
Provide the ability to determine printer utilization as a function of time.
Provide the ability to determine how long jobs wait before starting to print.
Accountant:
Provide information to allow the creation of a record of resources consumed and printer usage data for charging users or groups for resources consumed.
Provide information to allow the prediction of consumable usage and resource need.
The MIB supports printers that can contain more than one job at a time, but still be usable for low end printers that only contain a single job at a time. In particular, the MIB supports the needs of Windows and other PC environments for managing low-end networked devices without unnecessary overhead or complexity, while also providing for higher end systems and devices.
Types of Job Monitoring Applications
The Job Monitoring MIB is designed for the following types of monitoring applications:
Monitor a single job starting when the job is submitted and endingfinishing a defined period after the job completes. The Job Submission ID table provides the map to find the specific job to be monitored.
Monitor all 'active' jobs in a queue, which this specification generalizes to a "job set". End users may use such a program when selecting a least busy printer, so the MIB is designed for such a program to start up quickly and find the information needed quickly without having to read all (completed) jobs in order to find the active jobs. System operators may also use such a program, in which case it would be running for a long period of time and may also be interested in the jobs that have completed. Finally such a program may be used to provide an enhanced console and logging capability.
Collect resource usage for accounting or system utilization purposes that copy the completed job statistics to an accounting system. It is recognized that depending on accounting programs to copy MIB data during the job-retention period is somewhat unreliable, since the accounting program may not be running (or may have crashed). Such a program is also expected to keep a shadow copy of the entire Job Attribute table including completed, canceled, and aborted jobs which the program updates on each polling cycle. Such a program polls at the rate of the persistence of the Attribute table. The design is not optimized to help such an application determine which jobs are completed, canceled, or aborted. Instead, the application SHALL query each job that the application's shadow copy shows was not complete, canceled, or aborted at the previous poll cycle to see if it is now complete or canceled, plus any new jobs that have been submitted.
The MIB provides a set of objects that represent a compatible subset of job and document attributes of the ISO DPA standard[iso-dpa] and the Internet Printing Protocol (IPP)[ipp-model], so that coherence is maintained between these two protocols and the information presented to end users and system operators by monitoring applications. However, the job monitoring MIB is intended to be used with printers that implement other job submitting and management protocols, such as IEEE 1284.1 (TIPSI)[tipsi], as well as with ones that do implement ISO DPA. Thus the job monitoring MIB does not require implementation of either the ISO DPA or IPP protocols.
The MIB is designed so that an additional MIB(s) can be specified in the future for monitoring multi-function (scan, FAX, copy) jobs as an augmentation to this MIB.
Terminology and Job Model
This section defines the terms that are used in this specification and the general model for jobs.
NOTE - Existing systems use conflicting terms, so these terms are drawn from the ISO 10175 Document Printing Application (DPA) standard[iso-dpa]. For example, PostScript systems use the term session for what iswe called a job in this specification and the term job to mean what iswe called a document in this specification. PJL systems use the term job to mean what iswe called a job in this specification. PJL also supports multiple documents per job, but does not support specifying per-document attributes independently for each document.
Job: a unit of work whose results are expected together without interjection of unrelated results. A job contains one or more documents.
Job Sset: a group of jobs that are queued and scheduled together according to a specified scheduling algorithm for a specified device or set of devices. For implementations that embed the SNMP agent in the device, the MIB job set normally represents all the jobs known to the device, so that the implementation only implements a single job set. If the SNMP agent is implemented in a server that controls one or more devices, each MIB job set represents a job queue for (1) a specific device or (2) set of devices, if the server uses a single queue to load balance between several devices. Each job set is disjoint; no job SHALL be represented in more than one MIB job set.
Document: a sub-section within a job that contains print data and document instructions that apply to just the document.
Client: the network entity that end users use to submit jobs to spoolers, servers, or printers and other devices, depending on the configuration, using any job submission protocol.
Server: a network entity that accepts jobs from clients and in turn submits the jobs to printers and other devices. A server MAY be a printer supervisor control program, or a print spooler.
Device: a hardware entity that (1) interfaces to humans in human perceptible means, such as produces marks on paper, scans marks on paper to produce an electronic representations, or writes CD-ROMs or (2) interfaces electronically to another devicenetwork, such as sends FAX data to another FAX device.
Printer: a device that puts marks on media.
Supervisor: a server that contains a control program that controls a printer or other device. A supervisor is a client to the printer or other device.
Spooler: a server that accepts jobs, spools the data, and decides when and on which printer to print the job. A spooler is a client to a printer or a printer supervisor, depending on implementation.
Spooling: the act of a device or server of (1) accepting jobs and (2) writing the job's attributes and document data on to secondary storage.
Queuing: the act of a device or server of ordering (queuing) the jobs for the purposes of scheduling the jobs to be processed.
Monitor or Job Monitoring Application: the SNMP management application that End Users, and System Operators use to monitor jobs using SNMP. A monitor MAY be either a separate application or MAY be part of the client that also submits jobs.
Accounting Application: the SNMP management application that copies job information to some more permanent medium so that another application can perform accounting on the data for Accountants, Asset Managers, and Capacity Planners use.
Agent: the network entity that accepts SNMP requests from a monitor or accounting application and provides access to the instrumentation for managing jobs modeled by the management objects defined in the Job Monitoring MIB module for a server or a device.
Proxy: an agent that acts as a concentrator for one or more other agents by accepting SNMP operations on the behalf of one or more other agents, forwarding them on to those other agents, gathering responses from those other agents and returning them to the original requesting monitor.
User: is a person that uses a client or a monitor.
End User: is a user that uses a client to submit a print job.
System Operator: is a user that uses a monitor to monitor the system and carries out tasks to keep the system running.
System Administrator: is a user that specifies policy for the system.
Job Instruction: is an instruction specifying how, when, or where the job is to be processed. Job instructions MAY be passed in the job submission protocol or MAY be embedded in the document data or a combination depending on the job submission protocol and implementation.
Document Instruction: is an instruction specifying how to process the document. Document instructions MAY be passed in the job submission protocol separate from the actual document data, or MAY be embedded in the document data or a combination, depending on the job submission protocol and implementation.
SNMP Information Object: is a name, value-pair that specifies an action, a status, or a condition in an SNMP MIB. Objects are identified in SNMP by an OBJECT IDENTIFIER.
Attribute: is a name, value-pair that specifies a job or document instruction, a status, or a condition of a job or a document that has been submitted to a server or device. A particular attribute NEED NOT be present in each job instance. In other words, attributes are present in a job instance only when there is a need to express the value, either because (1) the client supplied a value in the job submission protocol, (2) the document data contained an embedded attribute, or (3) the server or device supplied a default value. An agent SHALL represent an attribute as an entry (row) in the Attribute table in this MIB in which entries are present only when necessary. Attributes are identified in this MIB by an enum.
Job Monitoring (using SNMP): is the activity of a management application of accessing the MIB and (1) identifying jobs in the job tableswithin the serial streams of data being processed by the server, printer or other devices, (2) creating "rows" in the job table for each job, and (23) displayingrecording information to the user, known by the agent, about the processing of the job in that "row".
Job Accounting: is the activity of a management application of accessing the MIB and recording what happens to the job during and after the processing and printing of the job.
System Configurations for the Job Monitoring MIB
This section enumerates the three configurations in which the Job Monitoring MIB is intended to be used. To simplify the pictures, the devices are shown as printers. See Goals section.
The diagram in the Printer MIB[print-mib] entitled: "One Printer's View of the Network" is assumed for this MIB as well. Please refer to that diagram to aid in understanding the following system configurations.
Configuration 1 - client-printer
In the client-printer configuration, the client(s) submit jobs directly to the printer, either by some direct connect, or by network connection. The client-printer configuration can accommodate multiple job submitting clients in either of two ways:
if each client relinquishes control of the Print Job Delivery Channel after each job (or after a number of jobs)
if the printer supports more than one Print Job Delivery Channel
The job submitting client and/or monitoring application monitor jobs by communicating directly with an agent that is part of the printer. The agent in the Printer SHALL keep the job in the Job Monitoring MIB as long as the job is in the Printer, plus a defined time period after the job enters the completed state in which accounting programs can copy out the accounting data from the Job Monitoring MIB.

 all end-user ######## SNMP query
 +-------+ +--------+ ---- job submission
 |monitor| | client |
 +---#---+ +--#--+--+
 # # |
 # ############ |
 # # |
 +==+===#=#=+==+ |
 | | agent | | |
 | +-------+ | |
 | PRINTER <--------+
 | | Print Job Delivery Channel
 | |
 +=============+
Figure � STYLEREF 1 \n �2�-� SEQ Figure * ARABIC \r 1 �1� - Configuration 1 - client-printer - agent in the printer
The Job Monitoring MIB is designed to support the following relationships (not shown in � REF _Ref377543804 * MERGEFORMAT �Figure 2-1�):
Multiple clients MAY submit jobs to a printer.
Multiple clients MAY monitor a printer.
Multiple monitors MAY monitor a printer.
A client MAY submit jobs to multiple printers.
A monitor MAY monitor multiple printers.
Configuration 2 - client-server-printer - agent in the server
In the client-server-printer configuration 2, the client(s) submit jobs to an intermediate server by some network connection, not directly to the printer. While configuration 2 is included, the design center for this MIB is configurations 1 and 3,
The job submitting client and/or monitoring application monitor job by communicating directly with:
A Job Monitoring MIB agent that is part of the server (or a front for the server)
There is no SNMP Job Monitoring MIB agent in the printer in configuration 2, at least that the client or monitor are aware. In this configuration, the agent SHALL return the current values of the objects in the Job Monitoring MIB both for jobs the server keeps and jobs that the server has submitted to the printer. The Job Monitoring MIB agent SHALL obtain the required information from the printer by a method that is beyond the scope of this document. The agent in the server SHALL keep the job in the Job Monitoring MIB in the server as long as the job is in the Printer, plus a defined time period after the job enters the completed state in which accounting programs can copy out the accounting data from the Job Monitoring MIB.

 all end-user
 +-------+ +----------+
 |monitor| | client | ######## SNMP query
 +---+---# +---#----+-+ **** non-SNMP cntrl
 # # | ---- job submission
 # # |
 # # |
 #=====#=+==v==+
 | agent | |
 +-------+ |
 | server |
 +----+-----+--+
 control * |
 ********** |
 * |
 +========v====+ |
 | | |
 | | |
 | PRINTER <---------+
 | | Print Job Delivery Channel
 | |
 +=============+
Figure � STYLEREF 1 \n �2�-� SEQ Figure * ARABIC �2� - Configuration 2 - client-server-printer - agent in the server
The Job Monitoring MIB is designed to support the following relationships (not shown in � REF _Ref377544204 * MERGEFORMAT �Figure 2-2�):
Multiple clients MAY submit jobs to a server.
Multiple clients MAY monitor a server.
Multiple monitors MAY monitor a server.
A client MAY submit jobs to multiple servers.
A monitor MAY monitor multiple servers.
Multiple servers MAY submit jobs to a printer.
Multiple servers MAY control a printer.
Configuration 3 - client-server-printer - client monitors printer agent and server
In the client-server-printer configuration 3, the client(s) submit jobs to an intermediate server by some network connection, not directly to the printer. That server does not contain a Job Monitoring MIB and agent.
The job submitting client and/or monitoring application monitor jobs by communicating directly with:
The server using some undefined protocol to monitor jobs in the server (that does not contain the Job Monitoring MIB) AND
A Job Monitoring MIB agent that is part of the printer to monitor jobs after the server passes the jobs to the printer. In such configurations, the server deletes its copy of the job from the server after submitting the job to the printer usually almost immediately (before the job does much processing, if any).
In configuration 3, the agent (in the printer) SHALL keep the values of the objects in the Job Monitoring MIB that the agent implements updated for a job that the server has submitted to the printer. The agent SHALL obtain information about the jobs submitted to the printer from the server (either in the job submission protocol, in the document data, or by direct query of the server), in order to populate some of the objects the Job Monitoring MIB in the printer. The agent in the printer SHALL keep the job in the Job Monitoring MIB as long as the job is in the Printer, and longer in order to implement the completed state in which monitoring programs can copy out the accounting data from the Job Monitoring MIB.

 all end-user
 +-------+ +----------+
 |monitor| | client | ######## SNMP query
 +---+---* +---*----+-+ **** non-SNMP query
 # * * | ---- job submission
 # * * |
 # * * |
 # *=====v====v==+
 # | |
 # | server |
 # | |
 # +----#-----+--+
 # optional# |
 # ########## |
 # # |
 +==+=v===v=+==+ |
 | | agent | | |
 | +-------+ | |
 | PRINTER <---------+
 | | Print Job Delivery Channel
 | |
 +=============+
Figure � STYLEREF 1 \n �2�-� SEQ Figure * ARABIC �3� - Configuration 3 - client-server-printer - client monitors printer agent and server
The Job Monitoring MIB is designed to support the following relationships (not shown in � REF _Ref382977456 * MERGEFORMAT �Figure 2-3�):
Multiple clients MAY submit jobs to a server.
Multiple clients MAY monitor a server.
Multiple monitors MAY monitor a server.
A client MAY submit jobs to multiple servers.
A monitor MAY monitor multiple servers.
Multiple servers MAY submit jobs to a printer.
Multiple servers MAY control a printer.
Managed Object Usage
This section describes the usage of the objects in the MIB.
Conformance Considerations
In order to achieve interoperability between job monitoring applications and job monitoring agents, this specification includes the conformance requirements for both monitoring applications and agents.
Conformance Terminology
This specification uses the verbs: "SHALL", "SHOULD", "MAY", and "NEED NOT" to specify conformance requirements according to RFC 2119 [req-words] as follows:
"SHALL": indicates an action that the subject of the sentence must implement in order to claim conformance to this specification
"MAY": indicates an action that the subject of the sentence does not have to implement in order to claim conformance to this specification, in other words that action is an implementation option
"NEED NOT": indicates an action that the subject of the sentence does not have to implement in order to claim conformance to this specification. The verb "NEED NOT" is used instead of "may not", since "may not" sounds like a prohibition.
"SHOULD": indicates an action that is recommended for the subject of the sentence to implement, but is not required, in order to claim conformance to this specification.
Agent Conformance Requirements
A conforming agent:
SHALL implement all MANDATORY groups in this specification.
SHALL implement any attributes if (1) the server or device supports the functionality represented by the attribute and (2) the information is available to the agent.
SHOULD implement both forms of an attribute if it implements an attribute that permits a choice of INTEGER and OCTET STRING forms, since implementing both forms may help management applications by giving them a choice of representations, since the representation are equivalent. See the JmAttributeTypeTC textual-convention.
NOTE - This MIB, like the Printer MIB, is written following the subset of SMIv2 that can be supported by SMIv1 and SNMPv1 implementations.
MIB II System Group objects
The Job Monitoring MIB agent SHALL implement all objects in the System Group of MIB-II[mib-II], whether the Printer MIB[print-mib] is implemented or not.
MIB II Interface Group objects
The Job Monitoring MIB agent SHALL implement all objects in the Interfaces Group of MIB-II[mib-II], whether the Printer MIB[print-mib] is implemented or not.
Printer MIB objects
If the agent is providing access to a device that is a printer, the agent SHALL implement all of the MANDATORY objects in the Printer MIB[print-mib] and all the objects in other MIBs that conformance to the Printer MIB requires, such as the Host Resources MIB[hr-mib]. If the agent is providing access to a server that controls one or more networked printers, the agent NEED NOT implement the Printer MIB and NEED NOT implement the Host Resources MIB.
Job Monitoring Application Conformance Requirements
A conforming job monitoring application:
SHALL accept the full syntactic range for all objects in all MANDATORY groups and all MANDATORY attributes that are required to be implemented by an agent according to Section � REF _Ref378303175 \n �3.1.2� and SHALL either present them to the user or ignore them.
SHALL accept the full syntactic range for all attributes, including enum and bit values specified in this specification and additional ones that may be registered with IANA and SHALL either present them to the user or ignore them. In particular, a conforming job monitoring application SHALL not malfunction when receiving any standard or registered enum or bit values. See Section � REF _Ref377982386 \n �3.6� entitled "� REF _Ref377982386 * MERGEFORMAT �IANA Considerations�".
SHALL NOT fail when operating with agents that materialize attributes after the job has been submitted, as opposed to when the job is submitted.
SHALL, if it supports a time attribute, accept either form of the time attribute, since agents are free to implement either time form.
The Job Tables and the Oldest Active and Newest Active Indexes
The jmJobTable and jmAttributeTable contain objects and attributes, respectively, for each job in a job set. These first two indexes are:
jmGeneralJobSetIndex - which job set
jmJobIndex - which job in the job set
In order for a monitoring application to quickly find that active jobs (jobs in the pending, processing, or processingStopped states), the MIB contains two indexes:
jmGeneralOldestActiveJobIndex - the index of the active job that has been in the tables the longest.
jmGeneralNewestActiveJobIndex - the index of the active job that has been most recently added to the tables.
The agent SHALL assign the next incrementalavailable value ofto the job's jmJobIndex to the job, when a new job is accepted by the server or device to whichthat the agent is providing access to. If the incremented value of jmJobIndex would exceed the implementation-defined maximum value for jmJobIndex, the agent SHALL 'wrap' back to 1. An agent uses the resulting value of jmJobIndex for storing information in the jmJobTable and the jmAttributeTable about the job.
It is recommended that the largest value for jmJobIndex be much larger than the maximum number of jobs that the implementation can contain at a single time, so as to minimize the pre-mature re-use of jmJobIndex value for a newer job while clients retain the same 'stale' value for an older job.
Each time a new job is accepted by the server or device that the agent is providing access to AND that job is to be 'active' (pending, processing, or processingStopped, but not pendingHeld), the agent SHALL copy the value of the job's jmJobIndex to the jmGeneralNewestActiveJobIndex object. If the new job is to be 'inactive' (pendingHeld state), the agent SHALL not change the value of jmGeneralNewestActiveJobIndex object.
When a job transitions from one of the 'active' job states (pending, processing, processingStopped) to one of the 'inactive' job states (pendingHeld, completed, canceled, or aborted), with a jmJobIndex value that matches the jmGeneralOldestActiveJobIndex object, the agent SHALL advance (or wrap) the value to the next oldest 'active' job, if any. See the JmJobStateTC textual-convention for a definition of the job states.
Whenever a job transitionschanges from one of the 'inactive' job states to one of the 'active' job states (from pendingHeld to pending or processing), the agent SHALL update the value of either the jmGeneralOldestActiveJobIndex or the jmGeneralNewestActiveJobIndex objects, or both, if the job's jmJobIndex value is outside the range between jmGeneralOldestActiveJobIndex and jmGeneralNewestActiveJobIndex.
When all jobs become 'inactive', i.e., enter the pendingHeld, completed, canceled, or aborted states, the agent SHALL set the value of both the jmGeneralOldestActiveJobIndex and jmGeneralNewestActiveJobIndex objects to 0.
NOTE - Applications that wish to efficiently access all of the active jobs MAY use jmGeneralOldestActiveJobIndex value to start with the oldest active job and continue until they reach the index value equal to jmGeneralNewestActiveJobIndex, skipping over any pendingHeld, completed, canceled, or aborted jobs that might intervene.
If an application detects that the jmGeneralNewestActiveJobIndex is smaller than jmGeneralOldestActiveJobIndex, the job index has wrapped. In this case, when the application detects that the returned OID is in a different MIB (Get Next has moved to the next MIB in the agent), the application SHALL reset the index tostart over at 1 when the end of the table is reached and continue the GetNext operations to find the rest of the active jobs.
NOTE - Application detect the end of the table when the OID returned by the GetNext operation is an OID in a different MIB. There is no object in this MIB that specifies the maximum value for the jmJobIndex supported by the implementation.
When the server or device is power-cycled, the agent SHALL remember the next jmJobIndex value to be assigned, so that new jobs are not assigned the same jmJobIndex as recent jobs before the power cycle.
The Attribute Mechanism
Attributes are similar to information objects, except that attributes are identified by an enum, instead of an OID, so that attributes may be registered without requiring a new MIB. Also an implementation that does not have the functionality represented by the attribute can omit the attribute entirely, rather than having to return a distinguished value. The agent is free to materialize an attribute in the jmAttributeTable as soon as the agent is aware of the value of the attribute.
The agent materializes job attributes in a four-indexed jmAttributeTable:
jmGeneralJobSetIndex - which job set
jmJobIndex - which job in the job set
jmAttributeTypeIndex - which attribute
jmAttributeInstanceIndex - which attribute instance for those attributes that can have multiple values per job.
Some attributes represent information about a job, such as a file-name, a document-name, a submission-time or a completion time. Other attributes represent resources required, e.g., a medium or a colorant, etc. to process the job before the job starts processing OR to indicate the amount of the resource consumed during and after processing, e.g., pages completed or impressions completed. If both a required and a consumed value of a resource is needed, this specification assigns two separate attribute enums in the textual convention.
NOTE - The table of contents lists all the attributes in order. This order is the order of enum assignments which is the order that the SNMP GetNext operation returns attributes. Most attributes apply to all three configurations covered by this MIB specification (see section � REF _Ref390534209 \n �2.1� entitled "� REF _Ref392864116 * MERGEFORMAT �System Configurations for the Job Monitoring MIB�"). Those attributes that apply to a particular configuration are indicated as 'Configuration n:' and SHALL NOT be used with other configurations.
Conformance of Attribute Implementation
An agent SHALL implement any attribute if (1) the server or device supports the functionality represented by the attribute and (2) the information is available to the agent. The agent MAY create the attribute row in the jmAttributeTable when the information is available or MAY create the row earlier with the designated 'unknown' value appropriate for that attribute. See next section.
If the server or device does not implement or does not provide access to the information about an attribute, the agent SHOULD NOT create the corresponding row in the jmAttributeTable.
Useful, 'Unknown', and 'Other' Values for Objects and Attributes
Some attributes have a 'useful' Integer32INTEGER32 value, some have a 'useful' OCTET STRING value, some MAY have either or both depending on implementation, and some MUST have both. See the JmAttributeTypeTC textual convention for the specification of each attribute.
SNMP requires that if an object cannot be implemented because its values cannot be accessed, then a compliant agent SHALL return an SNMP error in SNMPv1 or an exception value in SNMPv2. However, this MIB has been designed so that 'all' objects can and SHALL be implemented by an agent, so that neither the SNMPv1 error nor the SNMPv2 exception value SHALL be generated by the agent. This MIB has also been designed so that when an agent materializes an attribute, the agent SHALL materialize a row consisting of both the jmAttributeValueAsInteger and jmAttributeValueAsOctets objects.
In general, values for objects and attributes have been chosen so that a management application will be able to determine whether a 'useful', 'unknown', or 'other' value is available. When a useful value is not available for an object that agent SHALL return a zero-length string for octet strings, the value 'unknown(2)' for enums, a '0' value for an object that represents an index in another table, and a value '-2' for counting integers.
Since each attribute is represented by a row consisting of both the jmAttributeValueAsInteger and jmAttributeValueAsOctets MANDATORY objects, SNMP requires that the agent SHALL always create an attribute row with both objects specified. However, for most attributes the agent SHALL return a "useful" value for one of the objects and SHALL return the 'other' value for the other object. For integer only attributes, the agent SHALL always return a zero-length string value for the jmAttributeValueAsOctets object. For octet string only attributes, the agent SHALL always return a '-1' value for the jmAttributeValueAsInteger object.
Data Sub-types and Attribute Naming Conventions
Many attributes are sub-typed to give a more specific data sub-type than Integer32 or OCTET STRING. The data sub-type of each attribute is indicated on the first line(s) of the description. Some attributes have several different data sub-type representations. When an attribute has both an Integer32 data sub-type and an OCTET STRING data sub-type, the attribute can be represented in a single row in the jmAttributeTable. In this case, the data sub-type name is not included as the last part of the name of the attribute, e.g., � REF documentFormat * MERGEFORMAT �documentFormat(38)� which is both an enum and/or a name. When the data sub-types cannot be represented by a single row in the jmAttributeTable, each such representation is considered a separate attribute and is assigned a separate name and enum value. For these attributes, the name of the data sub-type is the last part of the name of the attribute: Name, Index, DateAndTime, TimeStamp, etc. For example, � REF documentFormatIndex * MERGEFORMAT �documentFormatIndex(37)� isin an index.
NOTE: The Table of Contents also lists the data sub-type and/or data sub-types of each attribute, using the textual-convention name when such is defined. The following abbreviations are used in the Table of Contents as shown:
'Int32(-2..)'�Integer32(-2..2147483647)��'Int32(0..)'�Integer32(0..2147483647)��'Int32(1..)'�Integer32(1..2147483647)��'Int32(m..n)'�For all other Integer ranges, the lower and upper bound of the range is indicated.��'Octets63'�OCTET STRING(SIZE(0..63))��'Octets(m..n)'�For all other OCTET STRING ranges, the exact range is indicated.��Single-Value (Row) Versus Multi-Value (MULTI-ROW) Attributes
Most attributes SHALL have only one row per job. However, a few attributes can have multiple values per job or even per document, where each value is a separate row in the jmAttributeTable. Unless indicated with 'MULTI-ROW:' in the JmAttributeTypeTC description, an agent SHALL ensure that each attribute occurs only once in the jmAttributeTable for a job. Most of the 'MULTI-ROW' attributes do not allow duplicate values, i.e., the agent SHALL ensure that each value occurs only once for a job. Only if the specification of the 'MULTI-ROW' attribute also says "the values NEED NOT be unique" can the agent allow duplicate values to occur for the job.Attributes that are permitted to appear multiple times in the jmAttributeTable for a job are indicated with 'MULTI-ROW:' in their specification in the JmAttributeTypeTC. However, such 'MULTI-ROW' attributes SHALL not contain duplicates for 'intensive' (as opposed to 'extensive') attributes.
NOTE - Duplicate are allowed for 'extensive' 'MULTI-ROW' attributes, such as � REF fileName * MERGEFORMAT �fileName(34)� or � REF documentName * MERGEFORMAT �documentName(35)�, but are not allowed for 'intensive' 'MULTI-ROW' attributes, such as � REF mediumConsumed * MERGEFORMAT �mediumConsumed(171)� and � REF documentFormat * MERGEFORMAT �documentFormat(38)�.For example, a job or document(s) may use multiple PDLs. However, each distinct documentFormat attribute value SHALL appear in the jmAttributeTable only once for a job since the interpreter language is an intensive attribute, even though the job has a number of documents that all use the same PDL.
As another example of an intensive attribute that can have multiple entries, if a document or job uses multiple types of media, there SHALL be only one row in the jmAttributeTable for each media type, not one row for each document that uses that medium type.
On the other hand, if a job contains two documents of the same name, there can be separate rows for the documentName attribute with the same name, since a document name is an extensive attribute. The specification indicates that the values NEED NOT be unique for such 'MULTI-ROW: attributes'
Requested Attributes
A number of attributes record requirements for the job. Such attribute names end with the word 'Requested'. In the interests of brevity, the phrase 'requested' SHALL mean: (1) requested by the client (or intervening server) in the job submission protocol that submitted the job and MAY also mean (2) embedded in the submitted document data, and/or (3) defaulted by the recipient device or server with the same semantics as if the requester had supplied, depending on implementation.
Consumption Attributes
A number of attributes record consumption. Such attribute names end with the word 'Completed' or 'Consumed'. If the job has not yet consumed what that resource is metering, the agent either: (1) SHALL return the value 0 or (2) SHALL not add this attribute to the jmAttributeTable until the consumption begins. In the interests of brevity, the semantics for 0 is specified once here and is not repeated for each consumptive attribute specification.
Index Value Attributes
A number of attributes are indexes in other tables. Such attribute names end with the word 'Index'. If the agent has not (yet) assigned an index value for a particular index attribute for a job, the agent SHALL either: (1) return the value 0 or (2) not add this attribute to the jmAttributeTable until the index value is assigned. In the interests of brevity, the semantics for 0 is specified once here and is not repeated for each index attribute specification.
Job Identification
There are a number of attributes that permit a user, operator or system administrator to identify jobs of interest, such as jobName, jobOriginatingHost, etc. In addition, there is a Job Submission ID object that allows a monitoring application to quickly locate and identify a particular job of interest that was submitted from a particular client by the user invoking the monitoring application. The Job Monitoring MIB needs to provide for identification of the job at both sides of the job submission process. The primary identification point is the client side. The Job Submission ID allows the monitoring application to identify the job of interest from all the jobs currently "known" by the server or device. The Job Submission ID can be assigned by either the client's local system or a downstream server or device. The point of assignment depends on the job submission protocol in use.
The server/device-side identifier, called the jmJobIndex object, SHALL be assigned by the SNMP Job Monitoring MIB agent when the server or device accepts the jobs from submitting clients. The jmJobIndex object allows the interested party to obtain all objects desired that relate to this job. The MIB provides a mapping table that maps each Job Submission ID (generated by the client) to the corresponding jmJobIndex value generated by the agent, so that an application can determine the correct value for the jmJobIndex value for the job of interest in a single Get operation, given the Job Submission ID. See the jmJobIDGroup.
The jobName attribute provides a name that the user supplies as a job attribute with the job. The jobName attribute is not necessarily unique, even for one user, let alone across users.
Internationalization Considerations
There are a number of objects in this MIB that are represented as coded character sets with a data type of OCTET STRING. Most of the objects are supplied as job attributes by the client that submits the job to the server or device and so are represented in the coded character set specified by that client.
For simplicity, this specification assumes that the clients, job monitoring applications, servers, and devices are all running in the same locale, including locales that use two-octet coded character sets, such as ISO 10646 (Unicode). Job monitoring applications are expected to understand the coded character set of the client (and job), server, or device. No special means is provided for the monitor to discover the coded character set used by jobs or by the server or device. This specification does not contain an object that indicates what locale the server or device is running in, let alone contain an object to control what locale the agent is to use to represent coded character set objects.
This MIB also contains objects that are represented using the DateAndTime textual convention from SMIv2 [SMIv2-TC]. The job management application SHALL display such objects in the locale of the user running the monitoring application.
IANA Considerations
During the development of this standard, the Printer Working Group (PWG) working with IANA [iana] will register additional enums while the standard is in the proposed and draft states according to the procedures described in this section. IANA will handle registration of additional enums after this standard is approved in cooperation with an IANA-appointed registration editor from the PWG according to the procedures described in this section:
IANA Registration of enums
This specification uses textual conventions to define enumerated values (enums) and bit values. Enumerations (enums) and bit values are sets of symbolic values defined for use with one or more objects or attributes. All enumeration sets and bit value sets are assigned a symbolic data type name (textual convention). As a convention the symbolic name ends in "TC" for textual convention. These enumerations are defined at the beginning of the MIB module specification.
This working group has defined several type of enumerations for use in the Job Monitoring MIB and the Printer MIB[print-mib]. These types differ in the method employed to control the addition of new enumerations. Throughout this document, references to "type n enum", where n can be 1, 2 or 3 can be found in the various tables. The definitions of these types of enumerations are:
Type 1 enumerations
Type 1 enumeration: All the values are defined in the Job Monitoring MIB specification (RFC for the Job Monitoring MIB). Additional enumerated values require a new RFC.
There are no type 1 enums in the current draft.
Type 2 enumerations
Type 2 enumeration: An initial set of values are defined in the Job Monitoring MIB specification. Additional enumerated values are registered after review by this working group or an editor appointed by IANA after this working group is no longer active. The initial versions of the MIB will contain the values registered so far. After the MIB is approved, additional values will be registered through IANA after approval by this working group.
The following type 2 enums are contained in the current draft :
JmTimeStampTC
JmFinishingTC [same enum values as IPP "finishing" attribute]
JmPrintQualityTC [same enum values as IPP "print-quality" attribute]
JmTonerEconomyTC
JmPrinterResolutionTC [same enum values as IPP "printer-resolution" attribute]
JmMediumTypeTC
JmJobSubmissionTypeTC
JmJobStateTC [same enum values as IPP "job-state" attribute]
JmAttributeTypeTC
For Tthose textual conventions that are labeled "[same enum values as IPP]" have the same enum values as the indicated IPP Job attribute. When IPP registers additional values, those values SHALL be simultaneously registered by IANA for use with the Job Monitoring MIB textual-convention, so that the enum values stay in lock step between the IPP [ipp-model] protocol and the Job Monitoring MIB.
Type 3 enumeration
Type 3 enumeration: An initial set of values are defined in the Job Monitoring MIB specification. Additional enumerated values are registered through IANA without working group review. The initial versions of the MIB will contain the values registered so far. After the MIB is approved, additional values will be registered through IANA without approval by this working group.
There are no type 3 enums in the current draft.
IANA Registration of type 2 bit values
This draft contains the following type 2 bit value textual-conventions:
JmJobServiceTypesTC
JmJobStateReasons1TC
JmJobStateReasons2TC
JmJobStateReasons3TC
JmJobStateReasons4TC
These textual-conventions are defined as bits in an Integer so that they can be used with SNMPv1 SMI. The jobStateReasonsN (N=1..4) attributes are defined as bit values using the corresponding JmJobStateReasonsNTC textual-conventions.
The registration of JmJobServiceTypesTC and JmJobStateReasonsNTC bit values SHALL follow the procedures for a type 2 enum as specified in Section � REF _Ref386602924 \n �3.6.1.2�.
IANA Registration of Job Submission Id Formats
In addition to enums and bit values, this specification assigns a single ASCII digit or letter to various job submission ID formats. See the JmJobSubmissionIDTypeTC textual-convention and the object. The registration of � REF jmJobSubmissionID * MERGEFORMAT �jmJobSubmissionID� format numbers SHALL follow the procedures for a type 2 enum as specified in Section � REF _Ref386602924 \n �3.6.1.2�.
IANA Registration of MIME types/sub-types for document-formats
The � REF documentFormat * MERGEFORMAT �documentFormat(38)� attribute has MIME type/sub-type values for indicating document formats which IANA registers as "media type" names. The values of the � REF documentFormat * MERGEFORMAT �documentFormat(38)� attribute are the same as the corresponding Internet Printing Protocol (IPP) "document-format" Job attribute values [ipp-model].
Security Considerations
Read-Write objects
All objects are read-only, greatly simplifying the security considerations. If another MIB augments this MIB, that MIB might accept SNMP Write operations to objects in that MIB whose effect is to modify the values of read-only objects in this MIB. However, that MIB SHALL have to support the required access control in order to achieve security, not this MIB.
Read-Only Objects In Other User's Jobs
The security policy of some sites MAY be that unprivileged users can only get the objects from jobs that they submitted, plus a few minimal objects from other jobs, such as the jmJobKOctetsRequested and jmJobKOctetsCompleted objects, so that a user can tell how busy a printer is. Other sites MAY allow all unprivileged users to see all objects of all jobs. This MIB does not require, nor does it specify how, such restrictions would be implemented. A monitoring application SHOULD enforce the site security policy with respect to returning information to an unprivileged end user that is using the monitoring application to monitor jobs that do not belong to that user, i.e., the jmJobOwner object in the jmJobTable does not match the user's user name.
An operator is a privileged user that would be able to see all objects of all jobs, independent of the policy for unprivileged users.
Notifications
This MIB does not specify any notifications. For simplicity, management applications are expected to poll for status. The jmGeneralJobPersistence and jmGeneralAttributePersistence objects assist an application to determine the polling rate. The resulting network traffic is not expected to be significant.
MIB specification
The following pages constitute the actual Job Monitoring MIB.
�Job-Monitoring-MIB DEFINITIONS ::= BEGIN

IMPORTS
MODULE-IDENTITY, OBJECT-TYPE, experimental, Integer32�
FROM SNMPv2-SMI��TEXTUAL-CONVENTION�FROM SNMPv2-TC��MODULE-COMPLIANCE, OBJECT-GROUP�FROM SNMPv2-CONF;��-- The following textual-conventions are needed
-- to implement certain attributes, but are not
-- needed to compile this MIB. They are
-- provided here for convenience:�

��-- hrDeviceIndex
-- DateAndTime
-- PrtInterpreterLangFamilyTC�FROM HOST-RESOURCES-MIB
FROM SNMPv2-TC
FROM Printer-MIB��
-- Use the experimental (54) OID assigned to the Printer MIB[print-mib]
-- before it was published as RFC 1759.
-- Upon publication of the Job Monitoring MIB as an RFC, delete this
-- comment and the line following this comment and change the
-- reference of { temp 105 } (below) to { mib-2 X }.
-- This will result in changing:
-- 1 3 6 1 3 54 jobmonMIB(105) to:
-- 1 3 6 1 2 1 jobmonMIB(X)
-- This will make it easier to translate prototypes to
-- the standard namespace because the lengths of the OIDs won't
-- change.
temp OBJECT IDENTIFIER ::= { experimental 54 }

jobmonMIB MODULE-IDENTITY
LAST-UPDATED "970721140000Z"
ORGANIZATION "IETF Printer MIB Working Group"
CONTACT-INFO
"Tom Hastings
Postal: Xerox Corp.
 Mail stop ESAE-231
 701 S. Aviation Blvd.
 El Segundo, CA 90245

Tel: (301)333-6413
Fax: (301)333-5514
E-mail: hastings@cp10.es.xerox.com

Send comments to the printmib WG using the Job Monitoring
Project (JMP) Mailing List: jmp@pwg.org

To learn how to subscribe to the JMP mailing list,
send email to: jmp-request@pwg.org

For further information, access the PWG web page under 'JMP':
http://www.pwg.org/"
DESCRIPTION
"The MIB module for monitoring job in servers, printers, and other devices.

File: draft-ietf-printmib-job-monitor-042.txt
Version: 0.843"
::= { temp 105 }

� TC "Textual conventions for this MIB module" \I 2 �
-- Textual conventions for this MIB module

� TC "JmTimeStampTC - simple time in seconds" \I 3 �
JmTimeStampTC� XE JmTimeStampTC� ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION
"The simple time at which an event took place. The units SHALL be in seconds since the system was booted.

NOTE - JmTimeStampTC is defined in units of seconds, rather than 100ths of seconds, so as to be simpler for agents to implement (even if they have to implement the 100ths of a second to comply with implementing sysUpTime in MIB-II[mib-II].)

NOTE - JmTimeStampTC is defined as an Integer32 so that it can be used as a value of an attribute, i.e., as a value of the jmAttributeValueAsInteger object. The TimeStamp textual-convention defined in SMNPv2-TC is defined as an APPLICATION 3 IMPLICIT INTEGER tag, not an Integer32, so cannot be used in this MIB as one of the values of jmAttributeValueAsInteger."
SYNTAX INTEGER(0..2147483647)

� TC "JmJobSourcePlatformTypeTC - operating system platform definitions" \I 3 �
JmJobSourcePlatformTypeTC� XE JmJobSourcePlatformTypeTC� ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION
"The source platform type that can submit jobs to servers or devices in any of the 3 configurations."
REFERENCE
"This is a type 2 enumeration. See Section � REF _Ref386602924 \n �3.6.1.2�."
SYNTAX INTEGER {
other(1),����unknown(2),����sptUNIX(3),�--�UNIX(tm)��sptOS2(4),�--�OS/2��sptPCDOS(5),�--�DOS��sptNT(6),�--�NT��sptMVS(7),�--�MVS��sptVM(8),�--�VM��sptOS400(9),�--�OS/400��sptVMS(10),�--�VMS��sptWindows95(11),�--�Windows95��sptNetWare(33)�--�NetWare��}

� TC "JmFinishingTC - device finishing definitions" \I 3 �
JmFinishingTC� XE JmFinishingTC� ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION
"The type of finishing operation.

These values are the same as the enum values of the IPP 'finishings' attribute. See Section � REF _Ref386602924 \n �3.6.1.2�.

other(1),�Some other finishing operation besides one of the specified or registered values.

unknown(2),�The finishing is unknown.

none(3),�Perform no finishing.

staple(4),�Bind the document(s) with one or more staples. The exact number and placement of the staples is site-defined.

stapleTopLeft(5),�Place one or more staples on the top left corner of the document(s).

stapleBottomLeft(6),�Place one or more staples on the bottom left corner of the document(s).

stapleTopRight(7),�Place one or more staples on the top right corner of the document(s).

stapleBottomRight(8),�Place one or more staples on the bottom right corner of the document(s).

saddleStitch(9),�Bind the document(s) with one or more staples (wire stitches) along the middle fold. The exact number and placement of the stitches is site-defined.

edgeStitch(10),�Bind the document(s) with one or more staples (wire stitches) along one edge. The exact number and placement of the staples is site-defined.

punch(11),�This value indicates that holes are required in the finished document. The exact number and placement of the holes is site-defined The punch specification MAY be satisfied (in a site- and implementation-specific manner) either by drilling/punching, or by substituting pre-drilled media.

cover(12),�This value is specified when it is desired to select a non-printed (or pre-printed) cover for the document. This does not supplant the specification of a printed cover (on cover stock medium) by the document itself.

bind(13)�This value indicates that a binding is to be applied to the document; the type and placement of the binding is product-specific."
REFERENCE
"This is a type 2 enumeration. See Section � REF _Ref386602924 \n �3.6.1.2�."
SYNTAX INTEGER {
other(1),
unknown(2),
none(3),
staple(4),
stapleTopLeft(5),
stapleBottomLeft(6),
stapleTopRight(7),
stapleBottomRight(8),
saddleStitch(9),
edgeStitch(10),
punch(11),
cover(12),
bind(13)
}

� TC "JmPrintQualityTC - print quality" \I 3 �
JmPrintQualityTC� XE JmPrintQualityTC� ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION
"Print quality settings.

These values are the same as the enum values of the IPP 'print-quality' attribute. See Section � REF _Ref386602924 \n �3.6.1.2�."
REFERENCE
"This is a type 2 enumeration. See Section � REF _Ref386602924 \n �3.6.1.2�."
SYNTAX INTEGER {
other(1),�--
--�Not one of the specified or registered values.��unknown(2),�--�The actual value is unknown.��draft(3),�--�Lowest quality available on the printer.��normal(4),�--
--�Normal or intermediate quality on the printer.��high(5)�--�Highest quality available on the printer.��}

� TC "JmPrinterResolutionTC - printer resolution" \I 3 �
JmPrinterResolutionTC� XE JmPrinterResolutionTC� ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION
"Printer resolutions.

Nine octets consisting of two 4-octet SIGNED-INTEGERs followed by a SIGNED-BYTE. The values are the same as those specified in the Printer MIB [printmib]. The first SIGNED-INTEGER contains the value of prtMarkerAddressabilityXFeedDir. The second SIGNED-INTEGER contains the value of prtMarkerAddressabilityFeedDir. The SIGNED-BYTE contains the value of prtMarkerAddressabilityUnit.

Note: the latter value is either 3 (tenThousandsOfInches) or 4 (micrometers) and the addressability is in 10,000 units of measure. Thus the SIGNED-INTEGERs represent integral values in either dots-per-inch or dots-per-centimeter.The values represent single integer resolutions or pairs of integer resolutions. The latter are to specify the resolution when the x and y dimensions differ. When two integers are specified, the first is in the x direction, i.e., in the direction of the shortest dimension of the medium, so that the value is independent of whether the printer feeds long edge or short edge first.

The syntax isse values are the same as the enum values of the IPP 'printer-resolution' attribute. See Section � REF _Ref386602924 \n �3.6.1.2�."
REFERENCE
"This is a type 2 enumeration. See Section ."
SYNTAX OCTET STRING (SIZE(9))INTEGER {
other(1),�--
--�Not one of the specified or registered values.��unknown(2),�--�The actual value is unknown.��normal(3),�--�Normal resolution.��res100(4),�--�100 x 100 dpi��res200(5),�--�200 x 200 dpi��res240(6),�--�240 x 240 dpi��res300(7),�--�300 x 300 dpi��res360(8),�--�360 x 360 dpi��res400(9),�--�400 x 400 dpi��res600(10),�--�600 x 600 dpi��res720(11),�--�720 x 720 dpi��res800(12),�--�800 x 800 dpi��res1200(13),�--�1200 x 1200 dpi��res1440(14),�--�1440 x 1440 dpi��res1600(15),�--�1600 x 1600 dpi��res1800(16),�--�1800 x 1800 dpi���
--
--
--�
future equal resolutions will be added here, the enum values will not be re-sorted or re-assigned:
��res100x200(100),�--�100 x 200 dpi��res200x100(101),�--�200 x 100 dpi��res300x600(102),�--�300 x 600 dpi��res600x300(103),�--�600 x 300 dpi��res360x720(104),�--�360 x 720 dpi��res720x360(105),�--�720 x 360 dpi��res400x800(106),�--�400 x 800 dpi��res800x400(107),�--�800 x 400 dpi��res600x1200(108),�--�600 x 1200 dpi��res1200x600(109),�--�1200 x 600 dpi��res720x1440(110),�--�720 x 1440 dpi��res1440x720(111),�--�1440 x 720 dpi��res1800x600(112)�--�1800 x 600 dpi���
--
--
--�
future unequal resolutions will be added here, the enum values will not be re-sorted or re-assigned:��}

� TC "JmTonerEconomyTC - toner economy setting" \I 3 �
JmTonerEconomyTC� XE JmTonerEconomyTC� ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION
"Toner economy settings."
REFERENCE
"This is a type 2 enumeration. See Section � REF _Ref386602924 \n �3.6.1.2�."
SYNTAX INTEGER {
unknown(2),�--�unknown.��off(3),�--�Off. Normal. Use full toner.��on(4)�--�On. Use less toner than normal.��}

� TC "JmBooleanTC - Boolean value" \I 3 �
JmBooleanTC� XE JmBooleanTC� ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION
"Boolean true or false value."
REFERENCE
"This is a type 2 enumeration. See Section � REF _Ref386602924 \n �3.6.1.2�."
SYNTAX INTEGER {
unknown(2),�--�unknown.��false(3),�--�FALSE.��true(4)�--�TRUE.��}

� TC "JmMediumTypeTC - medium type definitions" \I 3 �
JmMediumTypeTC� XE JmMediumTypeTC � ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION
"Identifies the type of medium.

other(1),�The type is neither one of the values listed in this specification nor a registered value.

unknown(2),�The type is not known.

stationery(3),�Separately cut sheets of an opaque material.

transparency(4),�Separately cut sheets of a transparent material.

envelope(5),�Envelopes that can be used for conventional mailing purposes.

envelopePlain(6),�Envelopes that are not preprinted and have no windows.

envelopeWindow(7),�Envelopes that have windows for addressing purposes.

continuousLong(8),�Continuously connected sheets of an opaque material connected along the long edge.

continuousShort(9),�Continuously connected sheets of an opaque material connected along the short edge.

tabStock(10),�Media with tabs.

multiPartForm(11),�Form medium composed of multiple layers not pre-attached to one another; each sheet MAY be drawn separately from an input source.

labels(12),�Label-stock.

multiLayer(13)�Form medium composed of multiple layers which are pre-attached to one another, e.g. for use with impact printers."
REFERENCE
"This is a type 2 enumeration. See Section � REF _Ref386602924 \n �3.6.1.2�."
SYNTAX INTEGER {
other(1),
unknown(2),
stationery(3),
transparency(4),
envelope(5),
envelopePlain(6),
envelopeWindow(7),
continuousLong(8),
continuousShort(9),
tabStock(10),
multiPartForm(11),
labels(12),
multiLayer(13)
}

� TC "JmJobSubmissionIDTypeTC - job submission ID type definitions" \I 3 �
JmJobSubmissionTypeTC� XE JmJobSubmissionTypeTC � ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION
"Identifies the format type of a job submission ID.

The ASCII characters '0-9', 'A-Z', and 'a-z' are assigned in order giving 62 possible formats.

Each job submission ID is a fixed-length, 48-octet printable ASCII coded character string, consisting of the following fields:

 octet 1 The format letter.
 octets 2-40 A 39-character, ASCII trailing SPACE filled
 field specified by the format letter, if the
 data is less than 39 ASCII characters.
 octets 41-48 A sequential or random number to make the ID
 quasi-unique.

If the client does not supply a job submission ID in the job submission protocol, then the server SHALL assign a job submission ID using any of the standard formats that are reserved to the agentand adding the final 8 octets to distinguish the ID from others submitted from the same client. Clients SHALL not use formats that are reserved to agents.

The format values defined at the time of completion of the specification registered so far are:

 Format
 Letter Description
 ------ ------------
 '0' octets 2-40: last 39 bytes of the jmJobOwner
 object.
 octets 41-48: 8-decimal-digit sequential number
 This format is reserved to agents for use when
 the client does not supply a job submission ID.
 Clients wishing to use a job submission ID that
 incorporates the job owner, SHALL use format '8'.

 NOTE - other formats may be registered that are
 reserved to the agent for use when the client does
 not supply a job submission ID.

 '1' octets 2-40: last 39 bytes of the jobName attribute.
 octets 41-48: 8-decimal-digit random number

 '2' octets 2-40: Client MAC address: in hexadecimal
 with each nibble of the 6 octet address being
 '0'-'9' or 'A' - 'F' (uppercase only).
 Most significant octet first.
 octets 41-48: 8-decimal-digit sequential number

 '3' octets 2-40: last 39 bytes of the client URL
 [URI-spec].
 octets 41-48: 8-decimal-digit sequential number

 '4' octets 2-40: last 39 bytes of the URI [URI-spec]
 assigned by the server or device to the job when
 the job was submitted for processing.
 octets 41-48: 8-decimal-digit sequential number

 '5' octets 2-40: last 39 bytes of a user number, such
 as POSIX user number.
 octets 41-48: 8-decimal-digit sequential number

 '6' octets 2-40: last 39 bytes of the user account
 number.
 octets 41-48: 8-decimal-digit sequential number

 '7' octets 2-40: last 39 bytes of the DTMF incoming
 FAX routing number.
 octets 41-48: 8-decimal-digit sequential number

 '8' octets 2-40: last 39 bytes of the job owner name
 (that the agent returns in the jmJobOwner object).
 octets 41-48: 8-decimal-digit sequential number

NOTE - the job submission id is only intended to be unique between a limited set of clients for a limited duration of time, namely, for the life time of the job in the context of the server or device that is processing the job. Some of the formats include something that is unique per client and a random number so that the same job submitted by the same client will have a different job submission id. For other formats, where part of the id is guaranteed to be unique for each client, such as the MAC address or URL, a sequential number SHOULD suffice for each client (and may be easier for each client to manage). Therefore, the length of the job submission id has been selected to reduce the probability of collision to an extremely low number, but is not intended to be an absolute guarantee of uniqueness. None-the-less, collisions are remotely possible, but without bad consequences, since this MIB is intended to be used only for monitoring jobs, not for controlling and managing them."
REFERENCE
"This is like a type 2 enumeration. See section � REF _Ref386812264 \n �3.6.3�."
SYNTAX OCTET STRING(SIZE(1)) -- ASCII '0'-'9', 'A'-'Z', 'a'-'z'

� TC "JmJobStateTC - job state definitions" \I 3 �
JmJobStateTC� XE JmJobStateTC� ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION
"The current state of the job (pending, processing, completed, etc.).

The following figure shows the normal job state transitions:

 +----> canceled(7)
 /
 +---> pending(3) --------> processing(5) ------+------> completed(9)
 | ^ ^ \
--->+ | | +----> aborted(8)
 | v v /
 +---> pendingHeld(4) processingStopped(6) ---+

Figure � SEQ Figure * ARABIC �4� - Normal Job State Transitions

Normally a job progresses from left to right. Other state transitions are unlikely, but are not forbidden. Not shown are the transitions to the canceled state from the pending, pendingHeld, processing, and processingStopped states.

Jobs in the pending, processing, and processingStopped states are called 'active', while jobs in the pendingHeld, canceled, aborted, and completed are called 'inactive'.

These values are the same as the enum values of the IPP 'job-state' job attribute. See Section � REF _Ref386602924 \n �3.6.1.2�.

other(1),�The job state is not one of the defined states.

unknown(2),�The job state is not known, or its state is indeterminate.

pending(3),�The job is a candidate to start processing, but is not yet processing.

pendingHeld(4),�The job is not a candidate for processing for any number of reasons but will return to the pending state as soon as the reasons are no longer present. The job's jmJobStateReasons1 object and/or jobStateReasonsN (N=2..4) attributes SHALL indicate why the job is no longer a candidate for processing. The reasons are represented as bits in the jmJobStateReasons1 object and/or jobStateReasonsN (N=2..4) attributes. See the JmJobStateReasonsNTC (N=1..4) textual convention for the specification of each reason.

processing(5),�Either:

1. The job is using, or is attempting to use, one or more document transforms which include (1) purely software processes that are interpreting a PDL, and (2) hardware devices that are interpreting a PDL, making marks on a medium, and/or performing finishing, such as stapling, etc.

OR

2. (configuration 2) the server has made the job ready for printing, but the output device is not yet printing it, either because the job hasn't reached the output device or because the job is queued in the output device or some other spooler, awaiting the output device to print it.

When the job is in the processing state, the entire job state includes the detailed status represented in the device MIB indicated by the hrDeviceIndex value of the job's physicalDevice attribute, if the agent implements such a device MIB.

Implementations MAY, though they NEED NOT, include additional values in the job's jmJobStateReasons1 object to indicate the progress of the job, such as adding the jobPrinting value to indicate when the device is actually making marks on a medium.

processingStopped(6),�The job has stopped while processing for any number of reasons and will return to the processing state as soon as the reasons are no longer present.

The job's jmJobStateReasons1 object and/or the job's jobStateReasonsN (N=2..4) attributes MAY indicate why the job has stopped processing. For example, if the output device is stopped, the deviceStopped value MAY be included in the job's jmJobStateReasons1 object.

NOTE - When an output device is stopped, the device usually indicates its condition in human readable form at the device. The management application can obtain more complete device status remotely by querying the appropriate device MIB using the job's deviceIndex attribute(s), if the agent implements such a device MIB

canceled(7),�A client has canceled the job and the job is either: (1) in the process of being terminated by the server or device or (2) has completed terminating. The job's jmJobStateReasons1 object SHOULD contain either the canceledByUser or canceledByOperator value.

aborted(8),�The job has been aborted by the system, usually while the job was in the processing or processingStopped state.

completed(9)�The job has completed successfully or with warnings or errors after processing and all of the media have been successfully stacked in the appropriate output bin(s). The job's jmJobStateReasons1 object SHOULD contain one of: completedSuccessfully, completedWithWarnings, or completedWithErrors values."
REFERENCE
"This is a type 2 enumeration. See Section � REF _Ref386602924 \n �3.6.1.2�."
SYNTAX INTEGER {
other(1),
unknown(2),
pending(3),
pendingHeld(4),
processing(5),
processingStopped(6),
canceled(7),
aborted(8),
completed(9)
}

� TC "JmAttributeTypeTC - attribute type definitions" \I 3 �
JmAttributeTypeTC� XE JmAttributeTypeTC � ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION
"The type of the attribute which identifies the attribute.

In the following definitions of the enums, each description indicates whether the useful value of the attribute SHALL be represented using the jmAttributeValueAsInteger or the jmAttributeValueAsOctets objects by the initial tag: 'INTEGER:' or 'OCTETS:', respectively.

Some attributes allow the agent implementer a choice of useful values of either an integer, an octets representation, or both, depending on implementation. These attributes are indicated with 'INTEGER:' AND/OR 'OCTETS:' tags.

A very few attributes require both objects at the same time to represent a pair of useful values (see � REF mediumConsumed * MERGEFORMAT �mediumConsumed(171)�). These attributes are indicated with 'INTEGER:' AND 'OCTETS:' tags. See the jmAttributeGroup for the descriptions of these two MANDATORY objects.

NOTE - The enum assignments are grouped logically with values assigned in groups of 20, so that additional values may be registered in the future and assigned a value that is part of their logical grouping.

NOTE: No attribute name exceeds 31 characters.

In the following descriptions of each attribute, the tags: 'INTEGER:' or 'OCTETS:' specify whether the value SHALL be represented in the jmAttributeValueAsInteger or the jmAttributeValueAsOctets object, or both, respectively.

The standard attribute types defined at the time of completion of the specificationdefined so far are:

jmAttributeTypeIndex	Datatype
--------------------	--------

other(1),� TC "other (Int32(-2..) and/or Octets63)" \I4 �� XE other �	Integer32(-2..2147483647)�	AND/OR�	OCTET STRING(SIZE(0..63))�INTEGER: and/or OCTETS: An attribute that is not in the list and/or that has not been approved and registered with IANA.

� TC "Job State attributes" \I 3 �
+++
+ Job State attributes
+
+ The following attributes specify the state of a job.
+++

jobStateReasons2(3),� TC "jobStateReasons2 (JmJobStateReasons2TC)" \I 3 �� XE jobStateReasons2 �	JmJobStateReasons2TC�INTEGER: Additional information about the job's current state that augments the jmJobState object. See the description under the JmJobStateReasons1TC textual-convention.

jobStateReasons3(4),� TC "jobStateReasons3 (JmJobStateReasons3TC)" \I 3 �� XE jobStateReasons3 �	JmJobStateReasons3TC�INTEGER: Additional information about the job's current state that augments the jmJobState object. See the description under JmJobStateReasons1TC textual-convention.

jobStateReasons4(5),� TC "jobStateReasons4 (JmJobStateReasons4TC)" \I 3 �� XE jobStateReasons4 �	JmJobStateReasons4TC�INTEGER: Additional information about the job's current state that augments the jmJobState object. See the description under JmJobStateReasons1TC textual-convention.
	
processingMessage(6),� TC "processingMessage (Octets63)" \I 4 �� XE processingMessage �	OCTET STRING(SIZE(0..63))�OCTETS: MULTI-ROW: A coded character set message that is generated during the processing of the job as a simple form of processing log to show progress and any problems.

There is no restriction for the same message to occurring in multiple rows.

� TC "Job Identification attributes" \I 3 �
+++
+ Job Identification attributes
+
+ The following attributes help an end user, a system
+ operator, or an accounting program identify a job.
+++

	�
jobAccountName(21),� TC "jobAccountName (Octets63)" \I 4 �� XE jobAccountName �	OCTET STRING(SIZE(0..63))�OCTETS: Arbitrary binary information which MAY be coded character set data or encrypted data supplied by the submitting user for use by accounting services to allocate or categorize charges for services provided, such as a customer account name or number.

NOTE: This attribute NEED NOT be printable characters.

serverAssignedJobName(22),� TC "serverAssignedJobName (Octets63)" \I 3 �� XE serverAssignedJobName �	OCTET STRING(SIZE(0..63))�OCTETS: Configuration 3 only: The human readable string name, number, or ID of the job as assigned by the server that submitted the job to the device that the agent is providing access to with this MIB.

NOTE - This attribute is intended for enabling a user to find his/her job that a server submitted to a device when either the client does not support the jmJobSubmissionID or the server does not pass the jmJobSubmissionID through to the device.

jobName(23),� TC "jobName (Octets63)" \I 3 �� XE jobName �	OCTET STRING(SIZE(0..63))�OCTETS: The human readable string name of the job as assigned by the submitting user to help the user distinguish between his/her various jobs. This name does not need to be unique.

This attribute is intended for enabling a user or the user's application to convey a job name that MAY be printed on a start sheet, returned in a query result, or used in notification or logging messages.

In order to assist users to find their jobs for job submission protocols that don't supply a jmJobSubmissionID, the agent SHOULD maintain the jobName attribute for the time specified by the jmGeneralJobPersistence object, rather than the (shorter) jmGeneralAttributePersistence object.

If this attribute is not specified when the job is submitted, no job name is assumed, but implementation specific defaults are allowed, such as the value of the documentName attribute of the first document in the job or the fileName attribute of the first document in the job.

The jobName attribute is distinguished from the jobComment attribute, in that the jobName attribute is intended to permit the submitting user to distinguish between different jobs that he/she has submitted. The jobComment attribute is intended to be free form additional information that a user might wish to use to communicate with himself/herself, such as a reminder of what to do with the results or to indicate a different set of input parameters were tried in several different job submissions.

jobServiceTypes(24),� TC "jobServiceTypes (JmJobServiceTypesTC)" \I 3 �� XE jobServiceTypes �	JmJobServiceTypesTC�INTEGER: Specifies the type(s) of service to which the job has been submitted (print, fax, scan, etc.). The service type is bit encoded with each job service type so that more general and arbitrary services can be created, such as services with more than one destination type, or ones with only a source or only a destination. For example, a job service might scan, faxOut, and print a single job. In this case, three bits would be set in the jobServiceTypes attribute, corresponding to the hexadecimal values: 0x8 + 0x20 + 0x4, respectively, yielding: 0x2C.

Whether this attribute is set from a job attribute supplied by the job submission client or is set by the recipient job submission server or device depends on the job submission protocol. This attribute SHALL be implemented if the server or device has other types in addition to or instead of printing.

One of the purposes of this attribute is to permit a requester to filter out jobs that are not of interest. For example, a printer operator may only be interested in jobs that include printing.

jobSourceChannelIndex(25),� TC "jobSourceChannelIndex (Int32(0..))" \I 4 �� XE jobSourceChannelIndex �	Integer32(0..2147483647)�INTEGER: The index of the row in the associated Printer MIB[print-mib] of the channel which is the source of the print job.

jobSourcePlatformType(26),� TC "jobSourcePlatformType (JmJobSourcePlatformTypeTC)" \I 4 �� XE jobSourcePlatformType �	JmJobSourcePlatformTypeTC�INTEGER: The source platform type of the immediate upstream submitter that submitted the job to the server (configuration 2) or device (configuration 1 and 3) to which the agent is providing access. For configuration 1, this is the type of the client that submitted the job to the device; for configuration 2, this is the type of the client that submitted the job to the server; and for configuration 3, this is the type of the server that submitted the job to the device.

submittingServerName(27),� TC "submittingServerName (Octets63)" \I 4 �� XE submittingServerName �	OCTET STRING(SIZE(0..63))�OCTETS: For configuration 3 only: The administrative name of the server that submitted the job to the device.

submittingApplicationName(28),� TC "submittingApplicationName (Octets63)" \I 4 �� XE submittingApplicationName �	OCTET STRING(SIZE(0..63))�OCTETS: The name of the client application (not the server in configuration 3) that submitted the job to the server or device.

jobOriginatingHost(29),� TC "jobOriginatingHost (Octets63)" \I 4 �� XE jobOriginatingHost�	OCTET STRING(SIZE(0..63))�OCTETS: The name of the client host (not the server host name in configuration 3) that submitted the job to the server or device.

deviceNameRequested(30),� TC "deviceNameRequested (Octets63)" \I 3 �� XE deviceNameRequested �	OCTET STRING(SIZE(0..63))�OCTETS: The administratively defined coded character set name of the target device requested by the submitting user. For configuration 1, its value corresponds to the Printer MIB[print-mib]: prtGeneralPrinterName object. For configuration 2 and 3, its value is the name of the logical or physical device that the user supplied to indicate to the server on which device(s) they wanted the job to be processed.

queueNameRequested(31),� TC "queueNameRequested (Octets63)" \I 3 �� XE queueNameRequested �	OCTET STRING(SIZE(0..63))�OCTETS: The administratively defined coded character set name of the target queue requested by the submitting user. For configuration 1, its value corresponds to the queue in the device for which the agent is providing access. For configuration 2 and 3, its value is the name of the queue that the user supplied to indicate to the server on which device(s) they wanted the job to be processed.

NOTE - typically an implementation SHOULD support either the deviceNameRequested or queueNameRequested attribute, but not both.

physicalDevice(32),� TC "physicalDevice (hrDeviceIndex and/or Octets63)" \I 4 �� XE physicalDevice �	hrDeviceIndex (see HR MIB)�	AND/OR�	OCTET STRING(SIZE(0..63))�INTEGER: MULTI-ROW: The index of the physical device MIB instance requested/used, such as the Printer MIB[print-mib]. This value is an hrDeviceIndex value. See the Host Resources MIB[hr-mib].
�AND/OR
�OCTETS: MULTI-ROW: The name of the physical device to which the job is assigned.

numberOfDocuments(33),� TC "numberOfDocuments (Int32(-2..))" \I 4 �� XE numberOfDocuments�	Integer32(-2..2147483647)�INTEGER: The number of documents in this job.

fileName(34),� TC "fileName (Octets63)" \I 4 �� XE fileName �	OCTET STRING(SIZE(0..63))�OCTETS: MULTI-ROW: The coded character set file name or URI[URI-spec] of the document.

There is no restriction on the same file name occurring in multiple rows.

documentName(35),� TC "documentName (Octets63)" \I 4 �� XE documentName �	OCTET STRING(SIZE(0..63))�OCTETS: MULTI-ROW: The coded character set name of the document.

There is no restriction on the same document name occurring in multiple rows.

jobComment(36),� TC "jobComment (Octets63)" \I 4 �� XE jobComment �	OCTET STRING(SIZE(0..63))�OCTETS: An arbitrary human-readable coded character text string supplied by the submitting user or the job submitting application program for any purpose. For example, a user might indicate what he/she is going to do with the printed output or the job submitting application program might indicate how the document was produced.

The jobComment attribute is not intended to be a name; see the jobName attribute.

documentFormatIndex(37),� TC "documentFormatIndex (Int32(0..))" \I 4 �� XE documentFormatIndex �	Integer32(0..2147483647)�INTEGER: MULTI-ROW: The index in the prtInterpreterTable in the Printer MIB[print-mib] of the page description language (PDL) or control language interpreter that this job requires/uses. A document or a job MAY use more than one PDL or control language.

NOTE - As with all intensive attributes where multiple rows are allowed, there SHALL be only one distinct row for each distinct interpreter; there SHALL be no duplicates.

NOTE - This attribute type is intended to be used with an agent that implements the Printer MIB and SHALL not be used if the agent does not implement the Printer MIB. Such an agent SHALL use the documentFormat attribute instead.

documentFormat(38),� TC "documentFormat (PrtInterpreterLangFamilyTC and/or Octets63)" \I 4 �� XE documentFormat �	PrtInterpreterLangFamilyTC�	AND/OR�	OCTET STRING(SIZE(0..63))�INTEGER: MULTI-ROW: The interpreter language family corresponding to the Printer MIB[print-mib] prtInterpreterLangFamily object, that this job requires/uses. A document or a job MAY use more than one PDL or control language.

AND/OR

OCTETS: MULTI-ROW: The document format registered as a media type[iana-media-types], i.e., the name of the MIME content-type/subtype. Examples: 'application/postscript', 'application/vnd.hp-PCL', and 'application/pdf'

� TC "Job Parameter attributes" \I 3 �
+++
+ Job Parameter attributes
+
+ The following attributes represent input parameters
+ supplied by the submitting client in the job submission
+ protocol.
+++

jobPriority(50),� TC "jobPriority (Int32(1..100))" \I 3 �� XE jobPriority �	Integer32(1..100)�INTEGER: The priority for scheduling the job. It is used by servers and devices that employ a priority-based scheduling algorithm.

A higher value specifies a higher priority. The value 1 is defined to indicate the lowest possible priority (a job which a priority-based scheduling algorithm SHALL pass over in favor of higher priority jobs). The value 100 is defined to indicate the highest possible priority. Priority is expected to be evenly or 'normally' distributed across this range. The mapping of vendor-defined priority over this range is implementation-specific.

jobProcessAfterDateAndTime(51),� TC "jobProcessAfterDateAndTime (DateAndTime)" \I 3 �� XE jobProcessAfterDateAndTime �	DateAndTime (SNMPv2-TC)�OCTETS: The calendar date and time of day after which the job SHALL become a candidate to be scheduled for processing. If the value of this attribute is in the future, the server SHALL set the value of the job's jmJobState object to pendingHeld and add the jobProcessAfterSpecified bit value to the job's jmJobStateReasons1 object. When the specified date and time arrives, the server SHALL remove the jobProcessAfterSpecified bit value from the job's jmJobStateReasons1 object and, if no other reasons remain, SHALL change the job's jmJobState object to pending.

jobHold(52),� TC "jobHold (JmBooleanTC)" \I 4 �� XE jobHold �	JmBooleanTC�INTEGER: If the value is 'true(4)', a client has explicitly specified that the job is to be held until explicitly released. Until the job is explicitly released by a client, the job SHALL be in the pendingHeld state with the jobHoldSpecified value in the jmJobStateReasons1 attribute.

jobHoldUntil(53),� TC "jobHoldUntil (Octets63)" \I 4 �� XE jobHoldUntil �	OCTET STRING(SIZE(0..63))�OCTETS: The named time period during which the job SHALL become a candidate for processing, such as 'no-hold', 'evening', 'night', 'weekend', 'second-shift', 'third-shift', etc., as defined by the system administrator. See IPP [ipp-model] for the standard keyword values. Until that time period arrives, the job SHALL be in the pendingHeld state with the jobHoldUntilSpecified value in the jmJobStateReasons1 object. The value 'no-hold' SHALL indicate explicitly that no time period has been specified.

outputBin(54),� TC "outputBin (Int32(0..) and/or Octets63)" \I 4 �� XE outputBin �	Integer32(0..2147483647)�	AND/OR�	OCTET STRING(SIZE(0..63))�INTEGER: MULTI-ROW: The output subunit index in the Printer MIB[print-mib]
�AND/OR

OCTETS: the name or number (represented as ASCII digits) of the output bin to which all or part of the job is placed in.

sides(55),� TC "sides (Int32(-2..2))" \I 4 �� XE sides �	Integer32(-2..2)�INTEGER: MULTI-ROW: The number of sides, '1' or '2', that any document in this job requires/used.

finishing(56),� TC "finishing (JmFinishingTC)" \I 4 �� XE finishing �	JmFinishingTC�INTEGER: MULTI-ROW: Type of finishing that any document in this job requires/used.

� TC "Image Quality attributes (requested and used)" \I 3 �
+++
+ Image Quality attributes (requested and consumed)
+
+ For devices that can vary the image quality.
+++

printQualityRequested(70),� TC "printQualityRequested (JmPrintQualityTC)" \I 4 �� XE printQualityRequested �	JmPrintQualityTC�INTEGER: MULTI-ROW: The print quality selection requested for a document in the job for printers that allow quality differentiation.

printQualityUsed(71),� TC "printQualityUsed (JmPrintQualityTC)" \I 4 �� XE printQualityUsed �	JmPrintQualityTC�INTEGER: MULTI-ROW: The print quality selection actually used by a document in the job for printers that allow quality differentiation.

printerResolutionRequested(72),� TC "printerResolutionRequested (JmPrinterResolutionTC)" \I 4 �� XE printerResolutionRequested �	JmPrinterResolutionTC�OCTETSINTEGER: MULTI-ROW: The printer resolution requested for a document in the job for printers that support resolution selection.

printerResolutionUsed(73),� TC "printerResolutionUsed (JmPrinterResolutionTC)" \I 4 �� XE printerResolutionUsed �	JmPrinterResolutionTC�OCTETSINTEGER: MULTI-ROW: The printer resolution actually used by a document in the job for printers that support resolution selection.

tonerEcomonyRequested(74),� TC "tonerEcomonyRequested (JmTonerEconomyTC)" \I 4 �� XE tonerEcomonyRequested �	JmTonerEconomyTC�INTEGER: MULTI-ROW: The print quality selection requested for documents in the job for printers that allow toner quality differentiation.

tonerEcomonyUsed(75),� TC "tonerEcomonyUsed (JmTonerEconomyTC)" \I 4 �� XE tonerEcomonyUsed �	JmTonerEconomyTC�INTEGER: MULTI-ROW: The print quality selection actually used by documents in the job for printers that allow toner quality differentiation.

tonerDensityRequested(76),� TC "tonerDensityRequested (Int32(-2..100))" \I 4 �� XE tonerDensityRequested �	Integer32(-2..100)�INTEGER: MULTI-ROW: The toner density requested for a document in this job for devices that can vary toner density levels. Level 1 is the lowest density and level 100 is the highest density level. Devices with a smaller range, SHALL map the 1-100 range evenly onto the implemented range.

tonerDensityUsed(77),� TC "tonerDensityUsed (Int32(-2..100))" \I 4 �� XE tonerDensityUsed �	Integer32(-2..100)�INTEGER: MULTI-ROW: The toner density used by documents in this job for devices that can vary toner density levels. Level 1 is the lowest density and level 100 is the highest density level. Devices with a smaller range, SHALL map the 1-100 range evenly onto the implemented range.

� TC "Job Progress attributes (requested and consumed)" \I 3 �
+++
+ Job Progress attributes (requested and consumed)
+
+ Pairs of these attributes can be used by monitoring
+ applications to show an indication of relative progress
+ to users.
+++

jobCopiesRequested(90),� TC "jobCopiesRequested (Int32(-2..))" \I 4 �� XE jobCopiesRequested �	Integer32(-2..2147483647)�INTEGER: The number of copies of the entire job that are to be produced.

jobCopiesCompleted(91),� TC "jobCopiesCompleted (Int32(-2..))" \I 4 �� XE jobCopiesCompleted �	Integer32(-2..2147483647)�INTEGER: The number of copies of the entire job that have been completed so far.

documentCopiesRequested(92),� TC "documentCopiesRequested (Int32(-2..))" \I 4 �� XE documentCopiesRequested �	Integer32(-2..2147483647)�INTEGER: The total count of the number of document copies requested. If there are documents A, B, and C, and document B is specified to produce 4 copies, the number of document copies requested is 6 for the job.

This attribute SHALL be used only when a job has multiple documents. The jobCopiesRequested attribute SHALL be used when the job has only one document.

documentCopiesCompleted(93),� TC "documentCopiesCompleted (Int32(-2..))" \I 4 �� XE documentCopiesCompleted �	Integer32(-2..2147483647)�INTEGER: The total count of the number of document copies completed so far for the job as a whole. If there are documents A, B, and C, and document B is specified to produce 4 copies, the number of document copies starts a 0 and runs up to 6 for the job as the job processes.

This attribute SHALL be used only when a job has multiple documents. The jobCopiesCompleted attribute SHALL be used when the job has only one document.

jobKOctetsTransferred(94),� TC "jobKOctetsTransferred (Int32(-2..))" \I 4 �� XE jobKOctetsTransferred �	Integer32(-2..2147483647)�INTEGER: The number of K (1024) octets transferred to the server or device to which the agent is providing access. This count is independent of the number of copies of the job or documents that will be produced, but it is only a measure of the number of bytes transferred to the server or device.

The agent SHALL round the actual number of octets transferred up to the next higher K. Thus 0 octets SHALL be represented as '0', 1-1024 octets SHALL BE represented as '1', 1025-2048 SHALL be '2', etc. When the job completes, the values of the jmJobKOctetsRequested object and the jobKOctetsTransferred attribute SHALL be equal.

NOTE - The jobKOctetsTransferred can be used with the jmJobKOctetsRequested object in order to produce a relative indication of the progress of the job for agents that do not implement the jmJobKOctetsProcessed object.

� TC "Impression attributes (requested and consumed)" \I 3 �
++
+ Impression attributes
+
+ For a print job, an impression is the marking of the
+ entire side of a sheet. Two-sided processing involves two
+ impressions per sheet. Two-up is the placement of two
+ logical pages on one side of a sheet and so is still a
+ single impression. See also jmJobImpressionsRequested and
+ jmJobImpressionsCompleted objects in the jmJobTable.
++

impressionsSpooled(110),� TC "impressionsSpooled (Int32(-2..))" \I 4 �� XE impressionsSpooled �	Integer32(-2..2147483647)�INTEGER: The number of impressions spooled to the server or device for the job so far.

impressionsSentToDevice(111),� TC "impressionsSentToDevice (Int32(-2..))" \I 4 �� XE impressionsSentToDevice �	Integer32(-2..2147483647)�INTEGER: The number of impressions sent to the device for the job so far.

impressionsInterpreted(112),� TC "impressionsInterpreted (Int32(-2..))" \I 4 �� XE impressionsInterpreted �	Integer32(-2..2147483647)�INTEGER: The number of impressions interpreted for the job so far.

impressionsCompletedCurrentCopy(113),� TC "impressionsCompletedCurrentCopy (Int32(-2..))" \I 4 �� XE impressionsCompletedCurrentCopy �	Integer32(-2..2147483647)�INTEGER: The number of impressions completed by the device for the current copy of the current document so far. For printing, the impressions completed includes interpreting, marking, and stacking the output. For other types of job services, the number of impressions completed includes the number of impressions processed.

This value SHALL be reset to 0 for each document in the job and for each document copy.

fullColorImpressionsCompleted(114),� TC "fullColorImpressionsCompleted (Int32(-2..))" \I 4 �� XE fullColorImpressionsCompleted�	Integer32(-2..2147483647)�INTEGER: The number of full color impressions completed by the device for this job so far. For printing, the impressions completed includes interpreting, marking, and stacking the output. For other types of job services, the number of impressions completed includes the number of impressions processed. Full color impressions are typically defined as those requiring 3 or more colorants, but this MAY vary by implementation.

highlightColorImpressionsCompleted(115), � TC "highlightColorImpressionsCompleted (Int32(-2..))" \I 4 �� XE highlightColorImpressionsCompleted�Integer32(-2..�	2147483647)�INTEGER: The number of highlight color impressions completed by the device for this job so far. For printing, the impressions completed includes interpreting, marking, and stacking the output. For other types of job services, the number of impressions completed includes the number of impressions processed. Highlight color impressions are typically defined as those requiring black plus one other colorant, but this MAY vary by implementation.

� TC "Page attributes (requested and consumed)" \I 3 �
+++
+ Page attributes
+
+ A page is a logical page. Number up can impose more than
+ one page on a single side of a sheet. Two-up is the
+ placement of two logical pages on one side of a sheet so
+ that each side counts as two pages.
+++

pagesRequested(130),� TC "pagesRequested (Int32(-2..))" \I 4 �� XE pagesRequested �	Integer32(-2..2147483647)�INTEGER: The number of logical pages requested by the job to be processed.

pagesCompleted(131),� TC "pagesCompleted (Int32(-2..))" \I 4 �� XE pagesCompleted �	Integer32(-2..2147483647)�INTEGER: The number of logical pages completed for this job so far.

pagesCompletedCurrentCopy(132),� TC "pagesCompletedCurrentCopy (Int32(-2..))" \I 4 �� XE pagesCompletedCurrentCopy �	Integer32(-2..2147483647)�INTEGER: The number of logical pages completed for the current copy of the document so far. This value SHALL be reset to 0 for each document in the job and for each document copy.

� TC "Sheet attributes (requested and consumed)" \I 3 �
+++
+ Sheet attributes
+
+ The sheet is a single piece of a medium, whether printing
+ on one or both sides.
+++

sheetsRequested(150),� TC "sheetsRequested (Int32(-2..))" \I 4 �� XE sheetsRequested �	Integer32(-2..2147483647)�INTEGER: The number of medium sheets requested to be processed for this job.

sheetsCompleted(151),� TC "sheetsCompleted (Int32(-2..))" \I 4 �� XE sheetsCompleted �	Integer32(-2..2147483647)�INTEGER: The number of medium sheets that have completed marking and stacking for the entire job so far whether those sheets have been processed on one side or on both.

sheetsCompletedCurrentCopy(152),� TC "sheetsCompletedCurrentCopy (Int32(-2..))" \I 4 �� XE sheetsCompletedCurrentCopy �	Integer32(-2..2147483647)�INTEGER: The number of medium sheets that have completed marking and stacking for the current copy of a document in the job so far whether those sheets have been processed on one side or on both.

The value of this attribute SHALL be reset to 0 as each document in the job starts being processed and for each document copy as it starts being processed.

� TC "Resource attributes (requested and consumed)" \I 3 �
++
+ Resources attributes (requested and consumed)
+
+ Pairs of these attributes can be used by monitoring
+ applications to show an indication of relative usage to
+ users.
++

mediumRequested(170),� TC "mediumRequested (JmMediumTypeTC and/or Octets63)" \I 4 �� XE mediumRequested �	JmMediumTypeTC�	AND/OR�	OCTET STRING(SIZE(0..63))�INTEGER: MULTI-ROW: The type �AND/OR�OCTETS: the name of the medium that is required by the job.

mediumConsumed(171),� TC "mediumConsumed (Int32(-2..) and/or Octets63)" \I 4 �� XE mediumConsumed �	Integer32(-2..2147483647)�	AND�	OCTET STRING(SIZE(0..63))�INTEGER: The number of sheets
AND
OCTETS: MULTI-ROW: the name of the medium that have been consumed so far whether those sheets have been processed on one side or on both.

This attribute SHALL have both Integer32 and OCTET STRING values.

colorantRequested(172),� TC "colorantRequested (Int32(-2..) and/or Octets63)" \I 4 �� XE colorantRequested �	Integer32(-2..2147483647)�	AND/OR�	OCTET STRING(SIZE(0..63))�INTEGER: MULTI-ROW: The index (prtMarkerColorantIndex) in the Printer MIB[print-mib] �AND/OR
OCTETS: the name of the colorant requested.

colorantConsumed(173),� TC "colorantConsumed (Int32(-2..) and/or Octets63)" \I 4 �� XE colorantConsumed �	Integer32(-2..2147483647)�	AND/OR�	OCTET STRING(SIZE(0..63))�INTEGER: MULTI-ROW: The index (prtMarkerColorantIndex) in the Printer MIB[print-mib] �AND/OR
OCTETS: the name of the colorant consumed.

� TC "Time attributes (set by server or device)" \I 3 �
+++
+ Time attributes (set by server or device)
+
+ This section of attributes are ones that are set by the
+ server or device that accepts jobs. Two forms of time are
+ provided. Each form is represented in a separate attribute.
+ See section � REF _Ref385954333 \n �3.1.2� and section � REF _Ref385954445 \n �3.1.3� for the
+ conformance requirements for time attribute for agents and
+ monitoring applications, respectively. The two forms are:
+
+ 'DateAndTime' is an 8 or 11 octet binary encoded year,
+ month, day, hour, minute, second, deci-second with
+ optional offset from UTC. See SNMPv2-TC [SMIv2-TC].
+
+ NOTE: 'DateAndTime' is not printable characters; it is
+ binary.
+
+ 'JmTimeStampTC' is the time of day measured in the number of
+ seconds since the system was booted.
+++

jobSubmissionToServerTime(190),� TC "jobSubmissionToServerTime (JmTimeStampTC and/or DateAndTime)" \I 4 �� XE jobSubmissionToServerTime �	JmTimeStampTC�	AND/OR�	DateAndTime (SNMPv2-TC)�INTEGER: Configuration 3 only: The time �AND/OR
OCTETS: the date and time that the job was submitted to the server (as distinguished from the device which uses jobSubmissionTime).

jobSubmissionTime(191),� TC "jobSubmissionTime (JmTimeStampTC and/or DateAndTime)" \I 4 �� XE jobSubmissionTime �	JmTimeStampTC�	AND/OR�	DateAndTime (SNMPv2-TC)�INTEGER: Configurations 1, 2, and 3: The time �AND/OR�OCTETS: the date and time that the job was submitted to the server or device to which the agent is providing access.

	�
jobStartedBeingHeldTime(192),� TC "jobStartedBeingHeldTime (JmTimeStampTC)" \I 4 �� XE jobStartedBeingHeldTime �	JmTimeStampTC�	AND/OR�	DateAndTime (SNMPv2-TC)�INTEGER: The time �AND/OR�OCTETS: the date and time that the job last entered the pendingHeld state. If the job has never entered the pendingHeld state, then the value SHALL be '0' or the attribute SHALL not be present in the table.

jobStartedProcessingTime(193),� TC "jobStartedProcessingTime (JmTimeStampTC and/or DateAndTime)" \I 4 �� XE jobStartedProcessingTime �	JmTimeStampTC�	AND/OR�	DateAndTime (SNMPv2-TC)�INTEGER: The time �AND/OR
OCTETS: the date and time that the job started processing.

jobCompletedTime(194),� TC "jobCompletedTime (JmTimeStampTC and/or DateAndTime)" \I 4 �� XE jobCompletedTime �	JmTimeStampTC�	AND/OR�	DateAndTime (SNMPv2-TC)�INTEGER: The time �AND/OR
OCTETS: the date and time that the job entered the completed, canceled, or aborted state.

jobProcessingCPUTime(195)� TC "jobProcessingCPUTime (Int32(-2..))" \I 4 �� XE jobProcessingCPUTime �	Integer32(-2..2147483647)�UNITS 'seconds'�INTEGER: The amount of CPU time in seconds that the job has been in the processing state. If the job enters the processingStopped state, that elapsed time SHALL not be included. In other words, the jobProcessingCPUTime value SHOULD be relatively repeatable when the same job is processed again on the same device."

REFERENCE
"See Section � REF _Ref392867237 \n �3.2� entitled '� REF _Ref393825118 * MERGEFORMAT �The Attribute Mechanism�' for a description of this textual-convention and its use in the jmAttributeTable.

This is a type 2 enumeration. See Section � REF _Ref386602924 \n �3.6.1.2�."
SYNTAX INTEGER {
other(1),
unknown(2),
jobStateReasons2(3),
jobStateReasons3(4),
jobStateReasons4(5),
processingMessage(6),

jobAccountName(21),
serverAssignedJobName(22),
jobName(23),
jobServiceTypes(24),
jobSourceChannelIndex(25),
jobSourcePlatformType(26),
submittingServerName(27),
submittingApplicationName(28),
jobOriginatingHost(29),
deviceNameRequested(30),
queueNameRequested(31),
physicalDevice(32),
numberOfDocuments(33),
fileName(34),
documentName(35),
jobComment(36),
documentFormatIndex(37),
documentFormat(38),

jobPriority(50),
jobProcessAfterDateAndTime(51),
jobHold(52),
jobHoldUntil(53),
outputBin(54),
sides(55),
finishing(56),

printQualityRequested(70),
printQualityUsed(71),
printerResolutionRequested(72),
printerResolutionUsed(73),
tonerEcomonyRequested(74),
tonerEcomonyUsed(75),
tonerDensityRequested(76),
tonerDensityUsed(77),

jobCopiesRequested(90),
jobCopiesCompleted(91),
documentCopiesRequested(92),
documentCopiesCompleted(93),
jobKOctetsTransferred(94),

impressionsSpooled(110),
impressionsSentToDevice(111),
impressionsInterpreted(112),
impressionsCompletedCurrentCopy(113),
fullColorImpressionsCompleted(114),
highlightColorImpressionsCompleted(115),

pagesRequested(130),
pagesCompleted(131),
pagesCompletedCurrentCopy(132),

sheetsRequested(150),
sheetsCompleted(151),
sheetsCompletedCurrentCopy(152),

mediumRequested(170),
mediumConsumed(171),
colorantRequested(172),
colorantConsumed(173),

jobSubmissionToServerTime(190),
jobSubmissionTime(191),
jobStartedBeingHeldTime(192),
jobStartedProcessingTime(193),
jobCompletedTime(194),
jobProcessingCPUTime(195)
}

� TC "JmJobServiceTypesTC - bit encoded job service type definitions" \I 3 �
JmJobServiceTypesTC� XE JmJobServiceTypesTC � ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION
"Specifies the type(s) of service to which the job has been submitted (print, fax, scan, etc.). The service type is represented as an enum that is bit encoded with each job service type so that more general and arbitrary services can be created, such as services with more than one destination type, or ones with only a source or only a destination. For example, a job service might scan, faxOut, and print a single job. In this case, three bits would be set in the jobServiceTypes attribute, corresponding to the hexadecimal values: 0x8 + 0x20 + 0x4, respectively, yielding: 0x2C.

Whether this attribute is set from a job attribute supplied by the job submission client or is set by the recipient job submission server or device depends on the job submission protocol. With either implementation, the agent SHALL return a non-zero value for this attribute indicating the type of the job.

One of the purposes of this attribute is to permit a requester to filter out jobs that are not of interest. For example, a printer operator MAY only be interested in jobs that include printing. That is why the attribute is in the job identification category.

The following service component types are defined (in hexadecimal) and are assigned a separate bit value for use with the jobServiceTypes attribute:

other	0x1
	The job contains some instructions that are not one of the identified types.

unknown	0x2
	The job contains some instructions whose type is unknown to the agent.

print	0x4
	The job contains some instructions that specify printing

scan	0x8
	The job contains some instructions that specify scanning

faxIn	0x10
	The job contains some instructions that specify receive fax

faxOut	0x20
	The job contains some instructions that specify sending fax

getFile	0x40
	The job contains some instructions that specify accessing files or documents

putFile	0x80
	The job contains some instructions that specify storing files or documents

mailList	0x100
	The job contains some instructions that specify distribution of documents using an electronic mail system."
REFERENCE
"These bit definitions are the equivalent of a type 2 enum except that combinations of them MAY be used together. See section � REF _Ref386602924 \n �3.6.1.2�."
SYNTAX INTEGER(0..2147483647) -- 31 bits, all but sign bit

� TC "JmJobStateReasons1TC - additional information about job states" \I 3 �
JmJobStateReasons1TC� XE JmJobStateReasons1TC � ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION
"The JmJobStateReasonsNTC (N=1..4) textual-conventions are used with the jmJobStateReasons1 object and jobStateReasonsN (N=2..4), respectively, to provides additional information regarding the current jmJobState object value. These values MAY be used with any job state or states for which the reason makes sense.

NOTE - While values cannot be added to the jmJobState object without impacting deployed clients that take actions upon receiving jmJobState values, it is the intent that additional JmJobStateReasonsNTC enums can be defined and registered without impacting such deployed clients. In other words, the jmJobStateReasons1 object and jobStateReasonsN attributes are intended to be extensible.

NOTE - The Job Monitoring MIB contains a superset of the IPP values[ipp-model] for the IPP 'job-state-reasons' attribute, since the Job Monitoring MIB is intended to cover other job submission protocols as well. Also some of the names of the reasons have been changed from 'printer' to 'device', since the Job Monitoring MIB is intended to cover additional types of devices, including input devices, such as scanners.

The following standard values are defined (in hexadecimal) as powers of two, since multiple values MAY be used at the same time. For ease of understanding, the JmJobStateReasons1TC reasons are presented in the order in which the reasons areis most likely to occur (if implemented), starting with the 'jobIncoming' value and ending with 'jobCompletedWithErrors' reasonsnot counting the 'other' and 'unknown' reasons.

other 	0x1�The job state reason is not one of the standardized or registered reasons.

unknown	0x2�The job state reason is not known to the agent or is indeterminent.

jobIncoming	0x4�The job has been accepted by the server or device, but the server or device is expecting (1) additional operations from the client to finish creating the job and/or (2) is accessing/accepting document data.

jobOutgoing	0x8�Configuration 2 only: The server is transmitting the job to the device.

jobHoldSpecified	0x10�The value of the job's � REF jobHold * MERGEFORMAT �jobHold(52)� attribute is TRUE. The job SHALL NOT be a candidate for processing until this reason is removed and there are no other reasons to hold the job.

jobHoldUntilSpecified	0x20�The value of the job's � REF jobHoldUntil * MERGEFORMAT �jobHoldUntil(53)� attribute specifies a time period that is still in the future. The job SHALL NOT be a candidate for processing until this reason is removed and there are no other reasons to hold the job.

jobProcessAfterSpecified	0x40�The value of the job's � REF jobProcessAfterDateAndTime * MERGEFORMAT �jobProcessAfterDateAndTime(51)� attribute specifies a time that is still in the future, either set when the job was created or subsequently by an explicit modify job operation. The job SHALL NOT be a candidate for processing until this reason is removed and there are no other reasons to hold the job.

resourcesAreNotReady	0x80�At least one of the resources needed by the job, such as media, fonts, resource objects, etc., is not ready on any of the physical devices for which the job is a candidate. This condition MAY be detected when the job is accepted, or subsequently while the job is pending or processing, depending on implementation.

deviceStoppedPartly	0x100�One or more, but not all, of the devices to which the job is assigned are stopped. If all of the devices are stopped (or the only device is stopped), the deviceStopped reason SHALL be used.

deviceStopped	0x200�The device(s) to which the job is assigned is (are all) stopped.

jobPrinting	0x400�The output device is marking media. This attribute is useful for servers and output devices which spend a great deal of time processing when no marking is happening and then want to show that marking is now happening or when the job is in the canceled or aborted state, but the marking has not yet stopped so that impression or sheet counts are still increasing for the job.

jobCanceledByUser	0x800�The job was canceled by the user, i.e., by an unknown user or by a user whose name is the same as the value of the job's jmJobOwner object.

jobCanceledByOperator	0x1000�The job was canceled by the operator, i.e., by a user whose name is different than the value of the job's jmJobOwner object.

abortedBySystem	0x2000�The job was aborted by the system.

NOTE - When the system puts a job into the 'aborted' job state, this reason is not needed. tThis reason is needed only when the system aborts a job, but, instead of placing does not put the job in the aborted job state,. For example, if the system aborts the job, but places the job in the pendingHeld state, so that a user or operator can manually try the job again.

jobCompletedSuccessfully	0x4000�The job completed successfully.

jobCompletedWithWarnings	0x8000�The job completed with warnings.

jobCompletedWithErrors	0x10000�The job completed with errors (and possibly warnings too).

The following additional job state reasons have been added to represent job states that are in ISO DPA[iso-dpa] and other job submission protocols:

jobPaused	0x20000�The job has been indefinitely suspended by a client issuing an operation to suspend the job so that other jobs may proceed using the same devices. The client MAY issue an operation to resume the paused job at any time, in which case the agent SHALL remove the jobPaused values from the job's jmJobStateReasons1 object and the job is eventually resumed at or near the point where the job was paused.

jobInterrupted	0x40000�The job has been interrupted while processing by a client issuing an operation that specifies another job to be run instead of the current job. The server or device will automatically resume the interrupted job when the interrupting job completes.

jobRetained	0x80000�The job is being retained by the server or device with all of the job's document data (and submitted resources, such as fonts, logos, and forms, if any). Thus a client could issue an operation to the server or device to either (1) re-do the job (or a copy of the job) on the same server or device or (2) resubmit the job to another server or device. When a client could no longer re-do/resubmit the job, such as after the document data has been discarded, the agent SHALL remove the jobRetained value from the jmJobStateReasons1 object."
REFERENCE
"These bit definitions are the equivalent of a type 2 enum except that combinations of bits may be used together. See section � REF _Ref386602924 \n �3.6.1.2�. The remaining bits are reserved for future standardization and/or registration."

SYNTAX INTEGER(0..2147483647) -- 31 bits, all but sign bit

� TC "JmJobStateReasons2TC - More additional information about job states" \I 3 �
JmJobStateReasons2TC� XE JmJobStateReasons2TC � ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION
"This textual-convention is used with the jobStateReasons2 attribute to provides additional information regarding the jmJobState object. See the description under JmJobStateReasons1TC for additional information that applies to all reasons.

The following standard values are defined (in hexadecimal) as powers of two, since multiple values may be used at the same time:

cascaded	0x1�An outbound gateway has transmitted all of the job's job and document attributes and data to another spooling system.

deletedByAdministrator	0x2�The administrator has deleted the job.

discardTimeArrived	0x4�The job has been deleted due to the fact that the time specified by the job's job-discard-time attribute has arrived.

postProcessingFailed	0x8�The post-processing agent failed while trying to log accounting attributes for the job; therefore the job has been placed into the completed state with the jobRetained jmJobStateReasons1 object value for a system-defined period of time, so the administrator can examine it, resubmit it, etc.

submissionInterrupted	0x10�Indicates that the job was not completely submitted for some unforeseen reason, such as: (1) the server has crashed before the job was closed by the client, (2) the server or the document transfer method has crashed in some non-recoverable way before the document data was entirely transferred to the server, (3) the client crashed or failed to close the job before the time-out period.

maxJobFaultCountExceeded	0x20�The job has faulted several times and has exceeded the administratively defined fault count limit.

devicesNeedAttentionTimeOut	0x40�One or more document transforms that the job is using needs human intervention in order for the job to make progress, but the human intervention did not occur within the site-settable time-out value.

needsKeyOperatorTimeOut	0x80�One or more devices or document transforms that the job is using need a specially trained operator (who may need a key to unlock the device and gain access) in order for the job to make progress, but the key operator intervention did not occur within the site-settable time-out value.

jobStartWaitTimeOut	0x100�The server/device has stopped the job at the beginning of processing to await human action, such as installing a special cartridge or special non-standard media, but the job was not resumed within the site-settable time-out value and the server/device has transitioned the job to the pendingHeld state.

jobEndWaitTimeOut	0x200�The server/device has stopped the job at the end of processing to await human action, such as removing a special cartridge or restoring standard media, but the job was not resumed within the site-settable time-out value and the server/device has transitioned the job to the completed state.

jobPasswordWaitTimeOut	0x400�The server/device has stopped the job at the beginning of processing to await input of the job's password, but the password was not received within the site-settable time-out value.

deviceTimedOut	0x800�A device that the job was using has not responded in a period specified by the device's site-settable attribute.

connectingToDeviceTimeOut	0x1000�The server is attempting to connect to one or more devices which may be dial-up, polled, or queued, and so may be busy with traffic from other systems, but server was unable to connect to the device within the site-settable time-out value.

transferring	0x2000�The job is being transferred to a down stream server or device.

queuedInDevice	0x4000�The job has been queued in a down stream server or device.

jobCleanup	0x8000�The server/device is performing cleanup activity as part of ending normal processing.

processingToStopPoint	0x10000�The requester has issued an operation to interrupt the job and the server/device is processing up until the specified stop point occurs.

jobPasswordWait	0x20000�The server/device has selected the job to be next to process, but instead of assigning resources and starting the job processing, the server/device has transitioned the job to the pendingHeld state to await entry of a password (and dispatched another job, if there is one).

validating	0x40000�The server/device is validating the job after accepting the job.

queueHeld	0x80000�The operator has held the entire job set or queue.

jobProofWait	0x100000�The job has produced a single proof copy and is in the pendingHeld state waiting for the requester to issue an operation to release the job to print normally, obeying any job and document copy attributes that were originally submitted.

heldForDiagnostics	0x200000�The system is running intrusive diagnostics, so that all jobs are being held.

serviceOffLine	0x400000�The service/document transform is off-line and accepting no jobs. All pending jobs are put into the pendingHeld state. This could be true if its input is impaired or broken.

noSpaceOnServer	0x800000�There is no room on the server to store all of the job.

pinRequired	0x1000000�The System Administrator settable device policy is (1) to require PINs, and (2) to hold jobs that do not have a pin supplied as an input parameter when the job was created.

exceededAccountLimit	0x2000000�The account for which this job is drawn has exceeded its limit. This condition SHOULD be detected before the job is scheduled so that the user does not wait until his/her job is scheduled only to find that the account is overdrawn. This condition MAY also occur while the job is processing either as processing begins or part way through processing.

heldForRetry	0x4000000�The job encountered some errors that the server/device could not recover from with its normal retry procedures, but the error might not be encountered if the job is processed againre-tried in the future., Example cases aresuch as phone number busy or remote file system in-accessible. For such a situation, the server/device SHALL transition the job from the processing to the pendingHeld, rather than to the aborted state.

The following values are from the X/Open PSIS draft standard:

canceledByShutdown	0x8000000�The job was canceled because the server or device was shutdown before completing the job.

deviceUnavailable	0x10000000�This job was aborted by the system because the device is currently unable to accept jobs.

wrongDevice	0x20000000�This job was aborted by the system because the device is unable to handle this particular job; the spooler SHOULD try another device or the user should submit the job to another device.

badJob	0x40000000�This job was aborted by the system because this job has a major problem, such as an ill-formed PDL; the spooler SHOULD not even try another device. "
REFERENCE
"These bit definitions are the equivalent of a type 2 enum except that combinations of them may be used together. See section � REF _Ref386602924 \n �3.6.1.2�. See the description under JmJobStateReasons1TC and the jobStateReasons2 attribute."

SYNTAX INTEGER(0..2147483647) -- 31 bits, all but sign bit

� TC "JmJobStateReasons3TC - More additional information about job states" \I 3 �
JmJobStateReasons3TC� XE JmJobStateReasons3TC � ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION
"This textual-convention is used with the jobStateReasons3 attribute to provides additional information regarding the jmJobState object. See the description under JmJobStateReasons1TC for additional information that applies to all reasons.

The following standard values are defined (in hexadecimal) as powers of two, since multiple values may be used at the same time:

jobInterruptedByDeviceFailure	0x1�A device or the print system software that the job was using has failed while the job was processing. The server or device is keeping the job in the pendingHeld state until an operator can determine what to do with the job."
REFERENCE
"These bit definitions are the equivalent of a type 2 enum except that combinations of them may be used together. See section � REF _Ref386602924 \n �3.6.1.2�. The remaining bits are reserved for future standardization and/or registration. See the description under JmJobStateReasons1TC and the jobStateReasons3 attribute."
SYNTAX INTEGER(0..2147483647) -- 31 bits, all but sign bit

� TC "JmJobStateReasons4TC - More additional information about job states" \I 3 �
JmJobStateReasons4TC� XE JmJobStateReasons4TC � ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION
"This textual-convention is used in the jobStateReasons4 attribute to provides additional information regarding the jmJobState object. See the description under JmJobStateReasons1TC for additional information that applies to all reasons.

The following standard values are defined (in hexadecimal) as powers of two, since multiple values may be used at the same time:

none yet defined. These bits are reserved for future standardization and/or registration."
REFERENCE
"These bit definitions are the equivalent of a type 2 enum except that combinations of them may be used together. See section � REF _Ref386602924 \n �3.6.1.2�. See the description under JmJobStateReasons1TC and the jobStateReasons4 attribute."

SYNTAX INTEGER(0..2147483647) -- 31 bits, all but sign bit
�� TC "The General Group (MANDATORY)" \I 2 �
jobmonMIBObjects OBJECT IDENTIFIER ::= { jobmonMIB 1 }

-- The General Group (MANDATORY)

-- The jmGeneralGroup consists entirely of the jmGeneralTable.

jmGeneral OBJECT IDENTIFIER ::= { jobmonMIBObjects 1 }

jmGeneralTable OBJECT-TYPE
SYNTAX SEQUENCE OF JmGeneralEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The jmGeneralTable consists of information of a general nature that are per-job-set, but are not per-job. See Section � REF _Ref392864500 \n �2� entitled '� REF _Ref382970318 * MERGEFORMAT �Terminology and Job Model�' for the definition of a job set."
REFERENCE
"The MANDATORY-GROUP macro specifies that this group is MANDATORY."
::= { jmGeneral 1 }

jmGeneralEntry OBJECT-TYPE
SYNTAX JmGeneralEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"Information about a job set (queue).

An entry SHALL exist in this table for each job set."
INDEX { jmGeneralJobSetIndex }
::= { jmGeneralTable 1 }

JmGeneralEntry ::= SEQUENCE {
jmGeneralJobSetIndex	Integer32(1..32767),
jmGeneralNumberOfActiveJobs	Integer32(0..2147483647),
jmGeneralOldestActiveJobIndex	Integer32(0..2147483647),
jmGeneralNewestActiveJobIndex	Integer32(0..2147483647),
jmGeneralJobPersistence	Integer32(15..2147483647),
jmGeneralAttributePersistence	Integer32(15..2147483647),
jmGeneralJobSetName	OCTET STRING(SIZE(0..63))
}

jmGeneralJobSetIndex� TC "jmGeneralJobSetIndex (Int32(1..32767))" \I 3 �� XE jmGeneralJobSetIndex � OBJECT-TYPE
SYNTAX Integer32(1..32767)
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A unique value for each job set in this MIB. The jmJobTable and jmAttributeTable tables have this same index as their primary index.

The value(s) of the jmGeneralJobSetIndex SHALL be persistent across power cycles, so that clients that have retained jmGeneralJobSetIndex values will access the same job sets upon subsequent power-up.

An implementation that has only one job set, such as a printer with a single queue, SHALL hard code this object with the value 1."
REFERENCE
"See Section � REF _Ref392864569 \n �2� entitled '� REF _Ref382970318 * MERGEFORMAT �Terminology and Job Model�' for the definition of a job set.
Corresponds to the first index in jmJobTable and jmAttributeTable."
::= { jmGeneralEntry 1 }

jmGeneralNumberOfActiveJobs� TC "jmGeneralNumberOfActiveJobs (Int32(0..))" \I 3 �� XE jmGeneralNumberOfActiveJobs � OBJECT-TYPE
SYNTAX Integer32(0..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The current number of 'active' jobs in the jmJobIDTable, jmJobTable, and jmAttributeTable, i.e., the total number of jobs that are in the pending, processing, or processingStopped states. See the � REF JmJobStateTC * MERGEFORMAT �JmJobStateTC� textual-convention for the exact specification of the semantics of the job states."
::= { jmGeneralEntry 2 }

jmGeneralOldestActiveJobIndex� TC "jmGeneralOldestActiveJobIndex (Int32(0..))" \I 3 �� XE jmGeneralOldestActiveJobIndex � OBJECT-TYPE
SYNTAX Integer32 (0..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The jmJobIndex of the oldest job that is still in one of the 'active' states (pending, processing, or processingStopped). In other words, the index of the 'active' job that has been in the job tables the longest.

If there are no active jobs, the agent SHALL set the value of this object to 0."
REFERENCE
"See Section � REF _Ref392869200 \n �3.2� entitled '� REF _Ref393821462 * MERGEFORMAT �The Job Tables and the Oldest Active and Newest Active Indexes�' for a description of the usage of this object."
::= { jmGeneralEntry 3 }

jmGeneralNewestActiveJobIndex� TC "jmGeneralNewestActiveJobIndex (Int32(0..))" �� XE jmGeneralNewestActiveJobIndex � OBJECT-TYPE
SYNTAX Integer32 (0..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The jmJobIndex of the newest job that is in one of the 'active' states (pending, processing, or processingStopped). In other words, the index of the 'active' job that has been most recently added to the job tables.

When all jobs become 'inactive', i.e., enter the pendingHeld, completed, canceled, or aborted states, the agent SHALL set the value of this object to 0."
REFERENCE
"See Section � REF _Ref392869200 \n �3.2� entitled '� REF _Ref393821462 * MERGEFORMAT �The Job Tables and the Oldest Active and Newest Active Indexes�' for a description of the usage of this object."
::= { jmGeneralEntry 4 }

jmGeneralJobPersistence� TC "jmGeneralJobPersistence (Int32(15..))" \I 3 �� XE jmGeneralJobPersistence � OBJECT-TYPE
SYNTAX Integer32(15..2147483647)
UNITS "seconds"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The minimum time in seconds for this instance of the Job Set that an entry SHALL remain in the jmJobIDTable and jmJobTable after processing has completed, i.e., the minimum time in seconds starting when the job enters the completed, canceled, or aborted state.

Depending on implementation, the value of this object MAY be either: (1) set by the system administrator by means outside this specification or (2) fixed by the implementation.

This value SHALL be equal to or greater than the value of jmGeneralAttributePersistence. This value SHOULD be at least 60 which gives a monitoring application one minute in which to poll for job data."
DEFVAL { 60 } -- one minute
::= { jmGeneralEntry 5 }

jmGeneralAttributePersistence� TC "jmGeneralAttributePersistence (Int32(15..))" \I 3 �� XE jmGeneralAttributePersistence � OBJECT-TYPE
SYNTAX Integer32(15..2147483647)
UNITS "seconds"
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The minimum time in seconds for this instance of the Job Set that an entry SHALL remain in the jmAttributeTable after processing has completed , i.e., the time in seconds starting when the job enters the completed, canceled, or aborted state.

Depending on implementation, the value of this object MAY be either (1) set by the system administrator by means outside this specification or MAY be (2) fixed by the implementation.

This value SHOULD be at least 60 which gives a monitoring application one minute in which to poll for job data."
DEFVAL { 60 } -- one minute
::= { jmGeneralEntry 6 }

jmGeneralJobSetName� TC "jmGeneralJobSetName (Octets63)" \I 3�� XE jmGeneralJobSetName� OBJECT-TYPE
SYNTAX OCTET STRING(SIZE(0..63))
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The human readable name of this job set assigned by the system administrator (by means outside of this MIB). Typically, this name SHOULD be the name of the job queue. If a server or device has only a single job set, this object can be the administratively assigned name of the server or device itself. This name does not need to be unique, though each job set in a single Job Monitoring MIB SHOULD have distinct names.

NOTE - The purpose of this object is to help the user of the job monitoring application distinguish between several job sets in implementations that support more than one job set."
REFERENCE
"See the OBJECT compliance macro for the minimum maximum length required for conformance."
::= { jmGeneralEntry 7 }

� TC "The Job ID Group (MANDATORY)"\ 2 �
-- The Job ID Group (MANDATORY)

-- The jmJobIDGroup consists entirely of the jmJobIDTable.

jmJobID OBJECT IDENTIFIER ::= { jobmonMIBObjects 2 }

jmJobIDTable OBJECT-TYPE
SYNTAX SEQUENCE OF JmJobIDEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The jmJobIDTable provides a correspondence map (1) between the job submission ID that a client uses to refer to a job and (2) the jmGeneralJobSetIndex and jmJobIndex that the Job Monitoring MIB agent assigned to the job and that are used to access the job in all of the other tables in the MIB. If a monitoring application already knows the jmGeneralJobSetIndex and the jmJobIndex of the job it is querying, that application NEED NOT use the jmJobIDTable."
REFERENCE
"The MANDATORY-GROUP macro specifies that this group is MANDATORY."
::= { jmJobID 1 }

jmJobIDEntry OBJECT-TYPE
SYNTAX JmJobIDEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The map from (1) the jmJobSubmissionID to (2) the jmGeneralJobSetIndex and jmJobIndex.

An entry SHALL exist in this table for each job currently known to the agent for all job sets and job states. Each job SHALL appear in one and only one job set."
INDEX { jmJobSubmissionID }
::= { jmJobIDTable 1 }

JmJobIDEntry ::= SEQUENCE {
jmJobSubmissionID	OCTET STRING(SIZE(48)),
jmJobIDJobSetIndex	Integer32(1..32767),
jmJobIDJobIndex	Integer32(1..2147483647)
}

jmJobSubmissionID� TC "jmJobSubmissionID (OCTET STRING(SIZE(48)))" \I 3 �� XE jmJobSubmissionID � OBJECT-TYPE
SYNTAX OCTET STRING(SIZE(48))
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A quasi-unique 48-octet fixed-length string ID which identifies the job within a particular client-server environment. There are multiple formats for the jmJobSubmissionID. See the JmJobSubmissionIDTypeTC textual convention. Each format SHALL be registered using the procedures of a type 2 enum. See section � REF _Ref386812264 \n �3.6.3� entitled: '� REF _Ref386812264 * MERGEFORMAT �IANA Registration of Job Submission Id Formats�'.

If the requester (client or server) does not supply a job submission ID in the job submission protocol, then the recipient (server or device) SHALL assign a job submission ID using any of the standard formats and adding the final 8 octets to distinguish the ID from others submitted from the same requester.

The monitoring application, whether in the client or running separately, MAY use the job submission ID to help identify which jmJobIndex was assigned by the agent, i.e., in which row the job information is in the other tables.

NOTE - fixed-length is used so that a management application can use a shortened GetNext varbind (in SNMPv1 and SNMPv2) in order to get the next submission ID, disregarding the remainder of the ID in order to access jobs independent of the trailing identifier part, e.g., to get all jobs submitted by a particular jmJobOwner or from a particular MAC address."
::= { jmJobIDEntry 1 }

jmJobIDJobSetIndex� TC "jmJobIDJobSetIndex (Int32(1..32767))" \I 3 �� XE jmJobIDJobSetIndex � OBJECT-TYPE
SYNTAX Integer32(1..32767)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This object contains the value of the jmGeneralJobSetIndex for the job with the jmJobSubmissionID value, i.e., the job set index of the job set in which the job was placed when that server or device accepted the job. This 16-bit value in combination with the jmJobIDJobIndex value permits the management application to access the other tables to obtain the job-specific objects for this job."
REFERENCE
"See jmGeneralJobSetIndex in the jmGeneralTable."
::= { jmJobIDEntry 2 }

jmJobIDJobIndex� TC "jmJobIDJobIndex (Int32(1..))" \I 3 �� XE jmJobIDJobIndex � OBJECT-TYPE
SYNTAX Integer32(1..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"This object contains the value of the jmJobIndex for the job with the jmJobSubmissionID value, i.e., the job index for the job when the server or device accepted the job. This value, in combination with the jmJobIDJobSetIndex value, permits the management application to access the other tables to obtain the job-specific objects for this job."
REFERENCE
"See jmJobIndex in the jmJobTable."
::= { jmJobIDEntry 3 }

� TC "The Job Group (MANDATORY)"\ 2 �
-- The Job Group (MANDATORY)

-- The jmJobGroup consists entirely of the jmJobTable.

jmJob OBJECT IDENTIFIER ::= { jobmonMIBObjects 3 }

jmJobTable OBJECT-TYPE
SYNTAX SEQUENCE OF JmJobEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The jmJobTable consists of basic job state and status information for each job in a job set that (1) monitoring applications need to be able to access in a single SNMP Get operation, (2) that have a single value per job, and (3) that SHALL always be implemented."
REFERENCE
"The MANDATORY-GROUP macro specifies that this group is MANDATORY."
::= { jmJob 1 }

jmJobEntry OBJECT-TYPE
SYNTAX JmJobEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"Basic per-job state and status information.

An entry SHALL exist in this table for each job, no matter what the state of the job is. Each job SHALL appear in one and only one job set."
REFERENCE
"See Section � REF _Ref392869200 \n �3.2� entitled '� REF _Ref392869200 * MERGEFORMAT �The Job Tables�'."
INDEX { jmGeneralJobSetIndex, jmJobIndex }
::= { jmJobTable 1 }

JmJobEntry ::= SEQUENCE {
jmJobIndex	Integer32(1..2147483647),
jmJobState	JmJobStateTC,
jmJobStateReasons1	JmJobStateReasons1TC,
jmNumberOfInterveningJobs	Integer32(-2..2147483647),
jmJobKOctetsRequested	Integer32(-2..2147483647),
jmJobKOctetsProcessed	Integer32(-2..2147483647),
jmJobImpressionsRequested	Integer32(-2..2147483647),
jmJobImpressionsCompleted	Integer32(-2..2147483647),
jmJobOwner	OCTET STRING(SIZE(0..63))
}

jmJobIndex� TC "jmJobIndex (Int32(1..))" \I 3 �� XE jmJobIndex � OBJECT-TYPE
SYNTAX Integer32(1..2147483647)
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The sequential, monatonically increasing identifier index for the job generated by the server or device when that server or device accepted the job. This index value permits the management application to access the other tables to obtain the job-specific row entries.

Agents providing access to systems that contain jobs with a job identifier of 0 SHALL map the job identifier value 0 to a jmJobIndex value that is one higher than the highest job identifier value that any job can have on that system."
REFERENCE
"See Section � REF _Ref392869200 \n �3.2� entitled '� REF _Ref392869200 * MERGEFORMAT �The Job Tables�'.
See also � REF jmGeneralNewestActiveJobIndex * MERGEFORMAT �jmGeneralNewestActiveJobIndex� for the largest value of jmJobIndex.
See JmJobSubmissionTypeTC for a limit on the size of this index if the agent represents it as an 8-digit decimal number."
::= { jmJobEntry 1 }

jmJobState� TC "jmJobState (JmJobStateTC)" \I 3 �� XE jmJobState � OBJECT-TYPE
SYNTAX JmJobStateTC
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The current state of the job (pending, processing, completed, etc.). Agents SHALL implement only those states which are appropriate for the particular implementation. However, management applications SHALL be prepared to receive all the standard job states.

The final value for this object SHALL be one of: completed, canceled, or aborted. The minimum length of time that the agent SHALL maintain MIB data for a job in the completed, canceled, or aborted state before removing the job data from the jmJobIDTable and jmJobTable is specified by the value of the jmGeneralJobPersistence object."
::= { jmJobEntry 2 }

jmJobStateReasons1� TC "jmJobStateReasons1 (JmJobStateReasons1TC)" \I 3 �� XE jmJobStateReasons1 � OBJECT-TYPE
SYNTAX JmJobStateReasons1TC
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"Additional information about the job's current state, i.e., information that augments the value of the job's jmJobState object.

Implementation of any reason values is OPTIONAL, but an agent SHOULD return any reason information available These values MAY be used with any job state or states for which the reason makes sense. Furthermore, when implemented as with any MIB data, the agent SHALL return these values when the reason applies and SHALL NOT return them when the reason no longer applies whether the value of the job's jmJobState object changed or not. When the agent cannot provide a reason for the current state of the jobjob does not have any reasons for being in its current state, the agent SHALL set the value of the jmJobStateReasons1 object and jobStateReasonsN attributes to 0."
REFERENCE
"The jobStateReasonsN (N=2..4) attributes provide further additional information about the job's current state."
::= { jmJobEntry 3 }

jmNumberOfInterveningJobs� TC "jmNumberOfInterveningJobs (Int32(-2..))" \I 3 �� XE jmNumberOfInterveningJobs� OBJECT-TYPE
SYNTAX Integer32(-2..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of jobs that are expected to be processed before this job is processed according to the implementation's queuing algorithm if no other jobs were to be submitted. In other words, this value is the job's queue position. The agent SHALL return a value of 0 for this attribute while the job is processing."
::= { jmJobEntry 4 }

jmJobKOctetsRequested� TC "jmJobKOctetsRequested (Int32(-2..))" \I 3 �� XE jmJobKOctetsRequested� OBJECT-TYPE
SYNTAX Integer32(-2..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The total size in K (1024) octets of the document(s) being requested to be processed in the job. The agent SHALL round the actual number of octets up to the next highest K. Thus 0 octets SHALL be represented as '0', 1-1024 octets SHALL be represented as '1', 1025-2048 SHALL be represented as '2', etc.

In computing this value, the server/device SHALL not include the multiplicative factors contributed by (1) the number of document copies, and (2) the number of job copies, independent of whether the device can process multiple copies of the job or document without making multiple passes over the job or document data and independent of whether the output is collated or not. Thus the server/device computation is independent of the implementation."
::= { jmJobEntry 5 }

jmJobKOctetsProcessed� TC "jmJobKOctetsProcessed (Int32(-2..))" \I 3 �� XE jmJobKOctetsProcessed� OBJECT-TYPE
SYNTAX Integer32(-2..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The current number of octets processed by the server or device measured in units of K (1024) octets. The agent SHALL round the actual number of octets processed up to the next higher K. Thus 0 octets SHALL be represented as '0', 1-1024 octets SHALL be represented as '1', 1025-2048 octets SHALL be '2', etc. For printing devices, this value is the number interpreted by the page description language interpreter rather than what has been marked on media.

For implementations where multiple copies are produced by the interpreter with only a single pass over the data, the final value SHALL be equal to the value of the jmJobKOctetsRequested object. For implementations where multiple copies are produced by the interpreter by processing the data for each copy, the final value SHALL be a multiple of the value of the jmJobKOctetsRequested object.

NOTE - See the impressionsCompletedCurrentCopy and pagesCompletedCurrentCopy attributes for attributes that are reset on each document copy.

NOTE - The jmJobKOctetsProcessed object can be used with the jmJobKOctetsRequested object to provide an indication of the relative progress of the job, provided that the multiplicative factor is taken into account for some implementations of multiple copies."
::= { jmJobEntry 6 }

jmJobImpressionsRequested� TC "jmJobImpressionsRequested (Int32(-2..))" \I 3 �� XE jmJobImpressionsRequested� OBJECT-TYPE
SYNTAX Integer32(-2..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The number of impressions requested by this job to produce."
::= { jmJobEntry 7 }

jmJobImpressionsCompleted� TC "jmJobImpressionsCompleted (Int32(-2..))" \I 3 �� XE jmJobImpressionsCompleted� OBJECT-TYPE
SYNTAX Integer32(-2..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The current number of impressions completed for this job so far. For printing devices, the impressions completed includes interpreting, marking, and stacking the output. For other types of job services, the number of impressions completed includes the number of impressions processed."
::= { jmJobEntry 8 }

jmJobOwner� TC "jmJobOwner (Octets63)" \I 3�� XE jmJobOwner� OBJECT-TYPE
SYNTAX OCTET STRING(SIZE(0..63))
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The coded character set name of the user that submitted the job. The method of assigning this user name will be system and/or site specific but the method MUST insure that the name is unique to the network that is visible to the client and target device.

This value SHOULD be the authenticated name of the user submitting the job."
REFERENCE
"See the OBJECT compliance macro for the minimum maximum length required for conformance."
::= { jmJobEntry 9 }

� TC "The Attribute Group (MANDATORY)" \I 2 �
-- The Attribute Group (MANDATORY)

-- The jmAttributeGroup consists entirely of the jmAttributeTable.
--
-- Implementation of the two objects in this group is MANDATORY.
-- See Section � REF _Ref393023203 \n �3.1� entitled '� REF _Ref393023220 * MERGEFORMAT �Conformance Considerations�'.
-- An agent SHALL implement any attribute if (1) the server or device
-- supports the functionality represented by the attribute and (2) the
-- information is available to the agent.(

jmAttribute OBJECT IDENTIFIER ::= { jobmonMIBObjects 4 }

jmAttributeTable OBJECT-TYPE
SYNTAX SEQUENCE OF JmAttributeEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The jmAttributeTable SHALL contain attributes of the job and document(s) for each job in a job set. Instead of allocating distinct objects for each attribute, each attribute is represented as a separate row in the jmAttributeTable."
REFERENCE
"The MANDATORY-GROUP macro specifies that this group is MANDATORY. An agent SHALL implement any attribute if (1) the server or device supports the functionality represented by the attribute and (2) the information is available to the agent. "
::= { jmAttribute 1 }

jmAttributeEntry OBJECT-TYPE
SYNTAX JmAttributeEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"Attributes representing information about the job and document(s) or resources required and/or consumed.

Each entry in the jmAttributeTable is a per-job entry with an extra index for each type of attribute (jmAttributeTypeIndex) that a job can have and an additional index (jmAttributeInstanceIndex) for those attributes that can have multiple instances per job. The jmAttributeTypeIndex object SHALL contain an enum type that indicates the type of attribute (see the JmAttributeTypeTC textual-convention). The value of the attribute SHALL be represented in either the jmAttributeValueAsInteger or jmAttributeValueAsOctets objects, and/or both, as specified in the JmAttributeTypeTC textual-convention.

The agent SHALL create rows in the jmAttributeTable as the server or device is able to discover the attributes either from the job submission protocol itself or from the document PDL. As the documents are interpreted, the interpreter MAY discover additional attributes and so the agent adds additional rows to this table. As the attributes that represent resources are actually consumed, the usage counter contained in the jmAttributeValueAsInteger object is incremented according to the units indicated in the description of the JmAttributeTypeTC enum.

The agent SHALL maintain each row in the jmJobTable for at least the minimum time after a job completes as specified by the jmGeneralAttributePersistence object.

Zero or more entries SHALL exist in this table for each job in a job set."
REFERENCE
"See Section � REF _Ref393825118 \n �3.3� entitled '� REF _Ref393825118 * MERGEFORMAT �The Attribute Mechanism�' for a description of the jmAttributeTable."
INDEX { jmGeneralJobSetIndex, jmJobIndex, jmAttributeTypeIndex, jmAttributeInstanceIndex }
::= { jmAttributeTable 1 }

JmAttributeEntry ::= SEQUENCE {
jmAttributeTypeIndex	JmAttributeTypeTC,
jmAttributeInstanceIndex	Integer32(1..32767),
jmAttributeValueAsInteger	Integer32(-2..2147483647),
jmAttributeValueAsOctets	OCTET STRING(SIZE(0..63))
}

jmAttributeTypeIndex� TC "jmAttributeTypeIndex (JmAttributeTypeTC)" \I 3 �� XE jmAttributeTypeIndex � OBJECT-TYPE
SYNTAX JmAttributeTypeTC
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"The type of attribute that this row entry represents.

The type MAY identify information about the job or document(s) or MAY identify a resource required to process the job before the job start processing and/or consumed by the job as the job is processed.

Examples of job and document attributes include: jobCopiesRequested, documentCopiesRequested, jobCopiesCompleted, documentCopiesCompleted, fileName, and documentName.

Examples of required and consumed resource attributes include: pagesRequested, pagesCompleted, mediumRequested, and mediumConsumed, respectively."
::= { jmAttributeEntry 1 }

jmAttributeInstanceIndex� TC "jmAttributeInstanceIndex (Int32(1..32767))" \I 3 �� XE jmAttributeInstanceIndex � OBJECT-TYPE
SYNTAX Integer32(1..32767)
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION
"A running 16-bit index of the attributes of the same type for each job. For those attributes with only a single instance per job, this index value SHALL be 1. For those attributes that are a single value per document, the index value SHALL be the document number, starting with 1 for the first document in the job. Jobs with only a single document SHALL use the index value of 1. For those attributes that can have multiple values per job or per document, such as � REF documentFormatIndex * MERGEFORMAT �documentFormatIndex(37)� or � REF documentFormat * MERGEFORMAT �documentFormat(38)�, the index SHALL be a running index for the job as a whole, starting at 1."
::= { jmAttributeEntry 2 }

jmAttributeValueAsInteger� TC "jmAttributeValueAsInteger (Int32(-2..))" \I 3 �� XE jmAttributeValueAsInteger � OBJECT-TYPE
SYNTAX Integer32(-2..2147483647)
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The integer value of the attribute. The value of the attribute SHALL be represented as an integer if the enum description in the JmAttributeTypeTC textual-convention definition has the tag: 'INTEGER:'.

Depending on the enum definition, this object value MAY be an integer, a counter, an index, or an enum, depending on the jmAttributeTypeIndex value. The units of this value are specified in the enum description.

For those attributes that are accumulating job consumption as the job is processed as specified in the JmAttributeTypeTC textual-convention, SHALL contain the final value after the job completes processing, i.e., this value SHALL indicate the total usage of this resource made by the job.

A monitoring application is able to copy this value to a suitable longer term storage for later processing as part of an accounting system.

Since the agent MAY add attributes representing resources to this table while the job is waiting to be processed or being processed, which can be a long time before any of the resources are actually used, the agent SHALL set the value of the jmAttributeValueAsInteger object to 0 for resources that the job has not yet consumed.

Attributes for which the concept of an integer value is meaningless, such as fileName, interpreter, and physicalDevice, do not have the 'INTEGER:' tag in the JmAttributeTypeTC definition and so an agent SHALL always return a value of '-1' to indicate 'other' for jmAttributeValueAsInteger.

For attributes which do have the 'INTEGER:' tag in the JmAttributeTypeTC definition, if the integer value is not (yet) known, the agent either SHALL not materialize the row in the jmAttributeTable until the value is known or SHALL return a '-2' to represent an 'unknown' counting integer value, a '0' to represent an 'unknown' index value, and a '2' to represent an 'unknown(2)' enum value."
::= { jmAttributeEntry 3 }

jmAttributeValueAsOctets� TC "jmAttributeValueAsOctets (Octets63)" \I 3 �� XE jmAttributeValueAsOctets � OBJECT-TYPE
SYNTAX OCTET STRING(SIZE(0..63))
MAX-ACCESS read-only
STATUS current
DESCRIPTION
"The octet string value of the attribute. The value of the attribute SHALL be represented as an OCTET STRING if the enum description in the JmAttributeTypeTC textual-convention definition has the tag: 'OCTETS:'.

Depending on the enum definition, this object value MAY be a coded character set string (text) or a binary octet string, such as DateAndTime.

Attributes for which the concept of an octet string value is meaningless, such as pagesCompleted, do not have the tag 'OCTETS:' in the JmAttributeTypeTC definition and so the agent SHALL always return a zero length string for the value of the jmAttributeValueAsOctets object.

For attributes which do have the 'OCTETS:' tag in the JmAttributeTypeTC definition, if the OCTET STRING value is not (yet) known, the agent either SHALL not materialize the row in the jmAttributeTable until the value is known or SHALL return a zero-length string."
::= { jmAttributeEntry 4 }

�-- Notifications and Trapping
-- Reserved for the future

jobmonMIBNotifications OBJECT IDENTIFIER ::= { jobmonMIB 2}

-- Conformance Information

jmMIBConformance OBJECT IDENTIFIER ::= { jobmonMIB 3 }

-- compliance statements
jmMIBCompliance MODULE-COMPLIANCE
STATUS current
DESCRIPTION
"The compliance statement for agents that implement the
job monitoring MIB."
MODULE -- this module
MANDATORY-GROUPS {
jmGeneralGroup, jmJobIDGroup, jmJobGroup, jmAttributeGroup }

OBJECT jmGeneralJobSetName
SYNTAX OCTET STRING (SIZE(0..8))
DESCRIPTION
"Only 8 octets maximum string length NEED be supported by the agent."

OBJECT jmJobOwner
SYNTAX OCTET STRING (SIZE(0..16))
DESCRIPTION
"Only 16 octets maximum string length NEED be supported by the agent."

-- There are no CONDITIONALLY MANDATORY or OPTIONAL groups.

::= { jmMIBConformance 1 }

jmMIBGroups OBJECT IDENTIFIER ::= { jmMIBConformance 2 }

jmGeneralGroup OBJECT-GROUP
OBJECTS {
jmGeneralNumberOfActiveJobs, jmGeneralOldestActiveJobIndex,
jmGeneralNewestActiveJobIndex, jmGeneralJobPersistence,
jmGeneralAttributePersistence, jmGeneralJobSetName}
STATUS current
DESCRIPTION
"The general group."
::= { jmMIBGroups 1 }

jmJobIDGroup OBJECT-GROUP
OBJECTS {
jmJobIDJobSetIndex, jmJobIDJobIndex }
STATUS current
DESCRIPTION
"The job ID group."
::= { jmMIBGroups 2 }

jmJobGroup OBJECT-GROUP
OBJECTS {
jmJobState, jmJobStateReasons1, jmNumberOfInterveningJobs, jmJobKOctetsRequested, jmJobKOctetsProcessed, jmJobImpressionsRequested, jmJobImpressionsCompleted, jmJobOwner }
STATUS current
DESCRIPTION
"The job group."
::= { jmMIBGroups 3 }

jmAttributeGroup OBJECT-GROUP
OBJECTS {
jmAttributeValueAsInteger, jmAttributeValueAsOctets }
STATUS current
DESCRIPTION
"The attribute group."
::= { jmMIBGroups 4 }

END
�Appendix A - Implementing the Job Life Cycle
The job object has well-defined states and client operations that affect the transition between the job states. Internal server and device actions also affect the transitions of the job between the job states. These states and transitions are referred to as the job's life cycle.
Not all implementations of job submission protocols have all of the states of the job model specified here. The job model specified here is intended to be a superset of most implementations. It is the purpose of the agent to map the particular implementation's job life cycle onto the one specified here. The agent MAY omit any states not implemented. Only the processing and completed states are required to be implemented by an agent. However, a conforming management application SHALL be prepared to accept any of the states in the job life cycle specified here, so that the management application can interoperate with any conforming agent.
The job states are intended to be user visible. The agent SHALL make these states visible in the MIB, but only for the subset of job states that the implementation has. Some implementations MAY need to have sub-states of these user-visible states. The jmJobStateReasons1 object and the jobStateReasonsN (N=2..4) attributes can be used to represent the sub-states of the jobs.
Job states are intended to last a user-visible length of time in most implementations. However, some jobs may pass through some states in zero time in some situations and/or in some implementations.
The job model does not specify how accounting and auditing is implemented, except to assume that accounting and auditing logs are separate from the job life cycle and last longer than job entries in the MIB. Jobs in the completed, aborted, or canceled states are not logs, since jobs in these states are accessible via SNMP protocol operations and SHALL be removed from the Job Monitoring MIB tables after a site-settable or implementation-defined period of time. An accounting application MAY copy accounting information incrementally to an accounting log as a job processes, or MAY be copied while the job is in the canceled, aborted, or completed states, depending on implementation. The same is true for auditing logs.
The jmJobState object specifies the standard job states. The normal job state transitions are shown in the state transition diagram presented in Table � SEQ Table * ARABIC �1�.
�APPENDIX B - Support of the Job Submission ID in Job Submission Protocols
This appendix lists the job submission protocols that support the concept of a job submission ID and indicates the attribute used in that job submission protocol.
Hewlett-Packard's Printer Job Language (PJL)
Hewlett-Packard's Printer Job Language provides job-level printer control and printer status information to applications. The PJL JOB command is used at the beginning of a print job and can include options applying only to that job. A PJL JOB command option has been defined to facilitate passing the JobSubmissionID with the print job, as required by the Job Monitoring MIB. The option is of the form:

 SUBMISSIONID = "id string"

Where the "id string" is a string and SHALL be enclosed in double quotes. The format is as described for the jmJobSubmissionID object.
The entire PJL JOB command with the optional parameter would be of the form:

 @PJL JOB SUBMISSIONID = "id string"

See "Printer Job Language Technical Reference Manual", part number 5021-0328, from Hewlett-Packard for complete information on the PJL JOB command and the Printer Job Language.
ISO DPA
The ISO 10175 Document Printing Application (DPA) protocol specifies the "job-client-id" attribute that allows the client to supply a text string ID for each job.
References
[hr-mib] P. Grillo, S. Waldbusser, "Host Resources MIB", RFC 1514, September 1993
[iana] J. Reynolds, and J. Postel, "Assigned Numbers", STD 2, RFC 1700, ISI, October 1994.
[iana-media-types] IANA Registration of MIME media types (MIME content types/subtypes). See ftp://ftp.isi.edu/in-notes/iana/assignments/
[iso-dpa] ISO/IEC 10175 Document Printing Application (DPA). See ftp://ftp.pwg.org/pub/pwg/dpa/
[ipp-model] Internet Printing Protocol (IPP), work in progress on the IETF standards track. See draft-ietf-ipp-model-01.txt. See also http://www.pwg.org/ipp/index.html
[mib-II] MIB-II, RFC 1213.
[print-mib] The Printer MIB - RFC 1759, proposed IETF standard. Also an Internet-Draft on the standards track as a draft standard: draft-ietf-printmib-mib-info-021.txt
[req-words] S. Bradner, "Keywords for use in RFCs to Indicate Requirement Levels", RFC 2119, March 1997.
[rfc 2130] C. Weider, C. Preston, K. Simonsen, H. Alvestrand, R. Atkinson, M. Crispin, and P. Svanberg, "The Report of the IAB Character Set Workshop held 29 Feb-1 March, 1997", April 1997, RFC 2130.
[SMIv2-TC] SNMPv2-TC, RFC 1903, J. Case, et al. “Textual Conventions for Version 2 of the Simple Network Managment Protocol (SNMPv2)”, RFC 1903, January 1996.
[tipsi] IEEE 1284.1, Transport-independent Printer System Interface (TIPSI).
[URI-spec] Berners-Lee, T., Masinter, L., McCahill, M. , "Uniform Resource Locators (URL)", RFC 1738, December, 1994.
Author's Addresses
Ron Bergman
Dataproducts Corp.
1757 Tapo Canyon Road
Simi Valley, CA 93063-3394

Phone: 805-578-4421
Fax: 805-578-4001
Email: rbergman@dpc.com

Tom Hastings
Xerox Corporation, ESAE-231
701 S. Aviation Blvd.
El Segundo, CA 90245

Phone: 310-333-6413
Fax: 310-333-5514
EMail: hastings@cp10.es.xerox.com

Scott A. Isaacson
Novell, Inc.
122 E 1700 S
Provo, UT 84606

Phone: 801-861-7366
Fax: 801-861-4025
EMail: scott_isaacson@novell.com

Harry Lewis
IBM Corporation
6300 Diagonal Hwy
Boulder, CO 80301

Phone: (303) 924-5337
Fax:
Email: harryl@us.ibm.com

Send comments to the printmib WG using the Job Monitoring Project (JMP) Mailing List: jmp@pwg.org

To learn how to subscribe, send email to: jmp-request@pwg.org

For further information, access the PWG web page under "JMP":
http://www.pwg.org/

Other Participants:
Chuck Adams - Tektronix
Jeff Barnett - IBM
Keith Carter, IBM Corporation
Jeff Copeland - QMS
Andy Davidson - Tektronix
Roger deBry - IBM
Mabry Dozier - QMS
Lee Ferrel - Canon
Steve Gebert - IBM
Robert Herriot - Sun Microsystems Inc.
Shige Kanemitsu - Kyocera
David Kellerman - Northlake Software
Rick Landau - Digital
Harry Lewis - IBM
Pete Loya - HP
Ray Lutz - Cognisys
Jay Martin - Underscore
Mike MacKay, Novell, Inc.
Stan McConnell - Xerox
Carl-Uno Manros, Xerox, Corp.
Pat Nogay - IBM
Bob Pentecost - HP
Rob Rhoads - Intel
David Roach - Unisys
Hiroyuki Sato - Canon
Bob Setterbo - Adobe
Gail Songer, EFI
Mike Timperman - Lexmark
Randy Turner - Sharp
William Wagner - Digital Products
Jim Walker - Dazel
Chris Wellens - Interworking Labs
Rob Whittle - Novell
Don Wright - Lexmark
Lloyd Young - Lexmark
Atsushi Yuki - Kyocera
Peter Zehler, Xerox, Corp.
�INDEX
This index includes the textual conventions, the objects, and the attributes. Textual conventions all start with the prefix: "JM" and end with the suffix: "TC". Objects all starts with the prefix: "jm" followed by the group name. Attributes are identified with enums, and so start with any lower case letter and have no special prefix.
� INDEX \e "	" \h "—A—" \c "2" ��—C—
colorantConsumed	55
colorantRequested	55
—D—
deviceNameRequested	46
documentCopiesCompleted	51
documentCopiesRequested	51
documentFormat	48
documentFormatIndex	48
documentName	47
—F—
fileName	47
finishing	50
fullColorImpressionsCompleted	53
—H—
highlightColorImpressionsCompleted	53
—I—
impressionsCompletedCurrentCopy	52
impressionsInterpreted	52
impressionsSentToDevice	52
impressionsSpooled	52
—J—
jmAttributeInstanceIndex	81
jmAttributeTypeIndex	81
JmAttributeTypeTC	42
jmAttributeValueAsInteger	82
jmAttributeValueAsOctets	82
JmBooleanTC	36
JmFinishingTC	32
jmGeneralAttributePersistence	71
jmGeneralJobPersistence	71
jmGeneralJobSetIndex	69
jmGeneralJobSetName	72
jmGeneralNewestActiveJobIndex	71
jmGeneralNumberOfActiveJobs	70
jmGeneralOldestActiveJobIndex	70
jmJobIDJobIndex	74
jmJobIDJobSetIndex	74
jmJobImpressionsCompleted	78
jmJobImpressionsRequested	78
jmJobIndex	76
jmJobKOctetsProcessed	78
jmJobKOctetsRequested	77
jmJobOwner	79
JmJobServiceTypesTC	58
JmJobSourcePlatformTypeTC	31
jmJobState	76
jmJobStateReasons1	76
JmJobStateReasons1TC	60
JmJobStateReasons2TC	63
JmJobStateReasons3TC	67
JmJobStateReasons4TC	68
JmJobStateTC	40
jmJobSubmissionID	73
JmJobSubmissionTypeTC	37
JmMediumTypeTC	36
jmNumberOfInterveningJobs	77
JmPrinterResolutionTC	34
JmPrintQualityTC	34
JmTimeStampTC	31
JmTonerEconomyTC	35
jobAccountName	44
jobComment	47
jobCompletedTime	56
jobCopiesCompleted	51
jobCopiesRequested	51
jobHold	49
jobHoldUntil	49
jobKOctetsTransferred	52
jobName	44
jobOriginatingHost	46
jobPriority	48
jobProcessAfterDateAndTime	49
jobProcessingCPUTime	56
jobServiceTypes	45
jobSourceChannelIndex	46
jobSourcePlatformType	46
jobStartedBeingHeldTime	56
jobStartedProcessingTime	56
jobStateReasons2	43
jobStateReasons3	43
jobStateReasons4	44
jobSubmissionTime	56
jobSubmissionToServerTime	56
—M—
mediumConsumed	54
mediumRequested	54
—N—
numberOfDocuments	47
—O—
other	43
outputBin	49
—P—
pagesCompleted	53
pagesCompletedCurrentCopy	53
pagesRequested	53
physicalDevice	47
printerResolutionRequested	50
printerResolutionUsed	50
printQualityRequested	50
printQualityUsed	50
processingMessage	44
—Q—
queueNameRequested	46
—S—
serverAssignedJobName	44
sheetsCompleted	54
sheetsCompletedCurrentCopy	54
sheetsRequested	54
sides	50
submittingApplicationName	46
submittingServerName	46
—T—
tonerDensityRequested	50
tonerDensityUsed	51
tonerEcomonyRequested	50
tonerEcomonyUsed	50
��

	Job Monitoring MIB, V0.84	July 21, 1997

�PAGE �78�

Bergman, Hastings, Isaacson, Lewis	[Page � PAGE �84�]

Bergman, Hastings, Isaacson, Lewis	[Page �PAGE�1�]

	Job Monitoring MIB, V0.84	July 21, 1997

Bergman, Hastings, Isaacson, Lewis	[Page � PAGE �91�]

