Robert Herriot (editor)

Sun Microsystems

Sylvan Butler

Hewlett Packard

Paul Moore�Microsoft.

Randy Turner�Sharp Labs

July 2, 1997

Internet Printing Protocol/1.0: Protocol Specification

draft-ietf-ipp-protocol-01.txt

Status of this Memo

This document is an Internet-Draft. Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress".

To learn the current status of any Internet-Draft, please check the "1id-abstracts.txt" listing contained in the Internet-Drafts Shadow Directories on ftp.is.co.za (Africa), nic.nordu.net (Europe), munnari.oz.au (Pacific Rim), ds.internic.net (US East Coast), or ftp.isi.edu (US West Coast).

Abstract

This document is one of a set of documents, which together describe all aspects of a new Internet Printing Protocol (IPP). IPP is an application level protocol that can be used for distributed printing using Internet tools and technology. The protocol is heavily influenced by the printing model introduced in the Document Printing Application (ISO/IEC 10175 DPA) standard. Although DPA specifies both end user and administrative features, IPP version 1.0 is focused only on end user functionality.

The full set of IPP documents includes:

Internet Printing Protocol: Requirements

Internet Printing Protocol/1.0: Model and Semantics

Internet Printing Protocol/1.0: Security

Internet Printing Protocol/1.0: Protocol Specification

Internet Printing Protocol/1.0: Directory Schema

The requirements document takes a broad look at distributed printing functionality, and it enumerates real-life scenarios that help to clarify the features that need to be included in a printing protocol for the Internet. It identifies requirements for three types of users: end users, operators, and administrators. The requirements document calls out a subset of end user requirements that MUST be satisfied in the first version of IPP. Operator and administrator requirements are out of scope for v1.0. The model and semantics document describes a simplified model with abstract objects, their attributes, and their operations. The model introduces a Printer object and a Job object. The Job object supports multiple documents per job. The security document covers potential threats and proposed counters to those threats. The protocol specification is formal document which incorporates the ideas in all the other documents into a concrete mapping using clearly defined data representations and transport protocol mappings that real implementers can use to develop interoperable client and server side components. Finally, the directory schema document shows a generic schema for directory service entries that represent instances of IPP Printers.

This document is the "Internet Printing Protocol/1.0: Protocol Specification" document.

�Table of Contents

� TOC \o "1-3" �1. Introduction	� GOTOBUTTON _Toc392510839 � PAGEREF _Toc392510839 �3��

2. Conformance Terminology	� GOTOBUTTON _Toc392510840 � PAGEREF _Toc392510840 �3��

3. Encoding of the Operation Layer	� GOTOBUTTON _Toc392510841 � PAGEREF _Toc392510841 �3��

3.1 Syntax of Encoding	� GOTOBUTTON _Toc392510842 � PAGEREF _Toc392510842 �3��

3.2 Diagram of Encoding	� GOTOBUTTON _Toc392510843 � PAGEREF _Toc392510843 �4��

3.3 Version	� GOTOBUTTON _Toc392510844 � PAGEREF _Toc392510844 �5��

3.4 Mapping of Operations	� GOTOBUTTON _Toc392510845 � PAGEREF _Toc392510845 �5��

3.5 Mapping of Status	� GOTOBUTTON _Toc392510846 � PAGEREF _Toc392510846 �6��

3.6 Lengths of Parameter Names	� GOTOBUTTON _Toc392510847 � PAGEREF _Toc392510847 �6��

3.7 Mapping of Attribute and Parameter Names	� GOTOBUTTON _Toc392510848 � PAGEREF _Toc392510848 �6��

3.8 Lengths of Parameter Values	� GOTOBUTTON _Toc392510849 � PAGEREF _Toc392510849 �7��

3.9 Mapping of Attribute and Parameter Values	� GOTOBUTTON _Toc392510850 � PAGEREF _Toc392510850 �7��

3.10 Encoding of Data	� GOTOBUTTON _Toc392510851 � PAGEREF _Toc392510851 �8��

4. Encoding of Transport Layer	� GOTOBUTTON _Toc392510852 � PAGEREF _Toc392510852 �8��

4.1 General Headers	� GOTOBUTTON _Toc392510853 � PAGEREF _Toc392510853 �9��

4.2 Request Headers	� GOTOBUTTON _Toc392510854 � PAGEREF _Toc392510854 �9��

4.3 Response Headers	� GOTOBUTTON _Toc392510855 � PAGEREF _Toc392510855 �10��

4.4 Entity Headers	� GOTOBUTTON _Toc392510856 � PAGEREF _Toc392510856 �10��

5. Security Considerations	� GOTOBUTTON _Toc392510857 � PAGEREF _Toc392510857 �10��

6. Appendix A: Requirements with Transports other than HTTP/1.1	� GOTOBUTTON _Toc392510858 � PAGEREF _Toc392510858 �11��

6.1 Additional Parameter-group for HTTP header information	� GOTOBUTTON _Toc392510859 � PAGEREF _Toc392510859 �11��

6.2 Chunking of Data	� GOTOBUTTON _Toc392510860 � PAGEREF _Toc392510860 �11��

6.3 Revised Syntax for the Operation Layer	� GOTOBUTTON _Toc392510861 � PAGEREF _Toc392510861 �12��

7. References	� GOTOBUTTON _Toc392510862 � PAGEREF _Toc392510862 �12��

8. Author's Address	� GOTOBUTTON _Toc392510863 � PAGEREF _Toc392510863 �13��

9. Other Participants:	� GOTOBUTTON _Toc392510864 � PAGEREF _Toc392510864 �14��

�

�Introduction

This document contains the rules for encoding IPP operations and describes two layers: the transport layer and the operation layer.

The transport layer consists of an HTTP/1.1 request or response. RFC 2068 describes HTTP/1.1. This document specifies the HTTP headers that an IPP implementation supports.

The operation layer consists of a message body in an HTTP request or response. The document "Internet Printing Protocol/1.0: Model and Semantics" defines the semantics of such a message body and the supported values. This document specifies the encoding of an IPP operation.

Conformance Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [25].

Encoding of the Operation Layer

The operation layer SHALL contain a single operation request or operation response.

The encoding is defined using both a diagram and Augmented Backus-Naur Form (ABNF), as specified by draft-ietf-drums-abnf-02.txt [29]

All binary integers in this encoding SHALL be transmitted in big-endian format (also known as “network order” and “most significant byte first”)

Syntax of Encoding

The syntax for the operation layer is:

ipp-message = ipp-request / ipp-response

ipp-request = version operation parameters %xFF %xFF [data]

ipp-response = version status parameters %xFF %xFF [data]

version = major-version minor-version

major-version = SIGNED-BYTE ; initially %d1

minor-version = SIGNED-BYTE ; initially %d0

operation = SIGNED-SHORT ; mapping from model defined below

status = SIGNED-SHORT ; mapping from model defined below

parameters = parameter-group *(%xFF %xFE parameter-group)

parameter-group = *parameter

parameter = single-parameter *(more-values)

single-parameter = name-length name value-length value

more-values = zero-name-length value-length value

name-length = SIGNED-SHORT ; number of octets of ‘name’

name = LALPHA *(LALPHA / DIGIT / “-” / “_”)

value-length = SIGNED-SHORT ; number of octets of ‘value’

value = OCTET-STRING

zero-name-length = %x00 %x00

data = OCTET-STRING

SIGNED-BYTE = %x0..%xFF

SIGNED-SHORT = %x0..%xFF %x0..%xFF

DIGIT = "0".."9"

LALPHA = "a".."z"

BYTE = %x0..%xFF

OCTET-STRING = *BYTE

NOTE: there are 3 additional fields that are positioned, from a decoding view, in the same position as the ‘name-length’ field. These fields are defined in the syntax above, and they have the following 3 special values:

0 (0x0000): denotes an additional value of a parameter. When a parameter has more than one value, the parameter-name for all but the first value is empty and has a length of zero.

-1 (0xFFFF): denotes the end of the parameters. The ‘data’ starts in the next byte. The 2 bytes of -1 are present even when there is no data.

-2 (0xFFFE): denotes the end of a parameter group. The next parameter-group starts in the next byte. This special value exists only when an operation contains 2 or more parameter groups. A parameter group is defined in greater detail in section � REF _Ref392507960 \n �3.7� “� REF _Ref392507962 * MERGEFORMAT �Mapping of Attribute and Parameter Names�”.

Diagram of Encoding

The following is a diagram of the encoding of a request operation.

Note: there are be 1 or more parameter groups and data may be omitted.

--

| major version | minor version | 2 bytes

--

| operation | 2 bytes

--

| parameter-group | k bytes

| 0xFFFE | 2 bytes |

-- |

| … | m bytes |

-- |

| parameter-group | n bytes |- optional

-- |

| 0xFFFE | 2 bytes |

-- |

| parameter-group | p bytes |

| 0xFFFF | 2 bytes

--

| data | q bytes - optional

--

The following is a diagram of the parameter-group which is 0 or more parameters

--

| parameter | r bytes

--

| … | s bytes

--

| parameter | t bytes

--

�The following is a diagram of a parameter. The optional fields are present only when a parameter has more than one value.

--

| length-of-name | 2 bytes

--

| parameter-name | u bytes

--

| length-of-value | 2 bytes

--

| parameter-value | v bytes

| 0x0000 | 2 bytes |

-- |

| length-of-value | 2 bytes |

-- |

| parameter-value | w bytes |- optional

-- |

| … | x bytes |

-- |

| 0x0000 | 2 bytes |

-- |

| length-of-value | 2 bytes |

-- |

| parameter-value | y bytes |

The encoding of a response operation is identical to the encoding of a request operation except that the ‘status’ field replaces the ‘operation’ field.

Version

The version SHALL consist of a major and minor version, each of which SHALL be represented by a one byte signed integer. The protocol described in this document SHALL have a major version of 1 (0x01) and a minor version of 0 (0x00).

Mapping of Operations

The following SHALL be the mapping of operations names to integer values which are encoded as two byte binary signed integers. The operations are defined in the document "Internet Printing Protocol/1.0: Model and Semantics".

Operation�Integer Encoding (in decimal)��Get-Operations�0��Print-Job�1��Print-URI�2��Validate-Job�3��Create-Job�4��Send-Document�5��Send-URI�6��Cancel-Job�7��Get-Attributes�8��Get-Jobs�9��

Mapping of Status

The following SHALL be the mapping of status names to integer values which are encoded as two byte binary signed integers. The status names are defined in the document "Internet Printing Protocol/1.0: Model and Semantics".

If an IPP status is returned, then the HTTP status MUST be 200 (OK). With any other HTTP status value, the HTTP response SHALL NOT contain an IPP message-body, and thus no IPP status is returned.

Note: the integer encodings below were chosen to be similar to corresponding status values in HTTP. But the status returned at the HTTP level will always be different except in the case where ‘OK’ is returned at both levels, 200 (OK) in HTTP and 0 (successful-OK) in IPP.

Status Name�Integer Encoding (in decimal)��successful-OK�0��client-error-bad-request�400��client-error-unauthorized�401��client-error-payment-required�402��client-error-forbidden�403��client-error-not-found�404��client-error-method-not-allowed�405��client-error-timeout�408��client-error-gone�410��client-error-request-entity-too-large�413��client-error-request-URI-too-long�414��client-error-unsupported-document-format�415��client-error-attribute-not-supported�416��server-error-internal-server-error�500��server-error-operation-not-implemented�501��server-error-service-unavailable�503��server-error-timeout�504��server-error-version-not-supported�505��server-error-printer-error�506��server-error-temporary-error�507��Lengths of Parameter Names

Each parameter name SHALL be preceded by a two byte binary signed integer in big endian order which SHALL specify the number of octets in the name which follows this length, exclusive of the two bytes specifying the length.

Mapping of Attribute and Parameter Names

Attribute names and parameter names are ASCII text strings whose values SHALL be the text names defined in the document "Internet Printing Protocol/1.0: Model and Semantics".

The document "Internet Printing Protocol/1.0: Model and Semantics" defines the parameters for each operation. Some of these parameters SHALL receive special handling in the protocol, as described below.

 The parameter named “status” for each response SHALL become the “status” field in the operation layer. A response may optionally include the parameter “reason-phase” to specify human readable text associated with the status. If this parameter is in the response, it SHALL be the first one.

The parameter named “document-content”, which is defined for some requests, SHALL become the “data” in the operation layer.

Requests and responses contain a mixture of parameters and attributes. All parameters SHALL be in the first parameter-group. Attributes shall be in the second parameter-group. If an operation returns attributes from more than one object (e.g. Get-Jobs), the attributes from each object shall be in a separate parameter-group.

Lengths of Parameter Values

Each parameter value SHALL be preceded by a two byte binary signed integer in big endian order which SHALL specify the number of octets in the value which follows this length, exclusive of the two bytes specifying the length.

Mapping of Attribute and Parameter Values

The following SHALL be the mapping of attribute and parameter values to their IPP encoding. The syntax types are defined in the document "Internet Printing Protocol/1.0: Model and Semantics".

Syntax of Attribute Value�Encoding��text�an octet string where each character is encoded in UTF-8. The first character in the octet string is the encoding of the first character in the text value��name�same as text��fileName�same as text��keyword�same as text. Allowed text values are defined in the document "Internet Printing Protocol/1.0: Model and Semantics".��uri�same as text��uriScheme�same as text��locale�same as text��boolean�one binary octet where 0x00 is ‘false’ and 0x01 is ‘true’��integer�number of octets is a power of 2 (i.e. 1, 2 or 4). These octets represent a signed binary integer in big endian order (MSB first).��enum�same as integer. Allowed integer values are defined in the document "Internet Printing Protocol/1.0: Model and Semantics".��dateTime�same as text. Syntax of data and time is defined by ISO 8601

ISSUE: should ISO 8601 be called out in the model document?��seconds�same as integer��milliseconds�same as integer��1setOf X�encoding according to the rules for a parameter with more than more value. Each value X is encoded according to the rules for encoding its type.��rangeOf X�same 1setOf X where the number of values is 2.��

There is sometimes a need for a parameter to have some special ‘out-of-band’ values. Such value are represented by empty values with special negative lengths as specified by the table below.

Special Value�Value of Value-length��default�-1��unsupported�-2��

Encoding of Data

No encoding SHALL be applied to the data. It is included within the operation as is.

NOTE: HTTP, however, allows an encoding to be applied to the entire message-body.

Encoding of Transport Layer

HTTP/1.1 shall be the transport layer for this protocol.

The operation layer has been designed with the assumption that the transport layer contains the following information:

the URI of the target job or printer operation

the total length of the data in the operation layer, either as a single length or as a sequence of chunks each with a length.

Each HTTP operation shall use the POST method where the URI the object target of the operation, and where the “Content-Type” of the message-body in each request and response shall be “application/ipp”. The message-body shall contain the operation layer and shall have the syntax described in section � REF _Ref392419490 \n �2� “� REF _Ref392419490 * MERGEFORMAT �Conformance Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [25].

Encoding of the Operation Layer�”.

ISSUE: Should the URI of the operation be in the operation layer? Should the URI in the POST be a server/printer always with the target object as a parameter within the message-body?

In the following sections, there are a tables of all HTTP headers which describe their use in an IPP client or server. The following is an explanation of each column in these tables.

the “header” column contains the name of a header

the “request/client” column indicates whether a client sends the header. The values in each cell are described below:

the “request/server” column indicates whether a server supports the header when received. The values in each cell are described below.

the “response/server” column indicates whether a server sends the header. The values in each cell are described below:

the “response /client” column indicates whether a client supports the header when received. The values in each cell are described below.

the “values and conditions” column specifies the allowed header values and the conditions for the header to be present in a request/response.

The table for “request headers” does not have columns for responses, and the table for “response headers” does not have columns for requests.

The following is an explanation of the values in the “request client” and “response server” columns.

man: (mandatory) the client or server MUST send the header,

c-man: (conditionally mandatory) the client or server MUST send the header when the condition described in the “values and conditions” column is met,

opt: (optional) the client or server MAY send the header

not: (not needed) the client or server NEED NOT send the header. It is not relevant to an IPP implementation.

The following is an explanation of the values in the “response client” and “request server” columns.

man: (mandatory) the client or server MUST support the header,

opt: (optional) the client or server MAY support the header

not: (not needed) the client or server NEED NOT support the header. It is not relevant to an IPP implementation.

General Headers

The following is a table for the general headers.

ISSUE: an HTTP expert should review these tables for accuracy.

General-Header�Request�Response�Values and Conditions���Client�Server�Server�Client���Cache-Control�man�not�man�not�“no-cache” only��Connection�c-man�man�c-man�man�“close” only. Header must be present only for last request/response before the connection is closed. ��Date�opt�opt�man�opt�per RFC 1123��Pragma`�man�not�man�not�“no-cache” only��Transfer-Encoding�c-man�man�c-man�man�“chunked” only . Header must be present if Content-Length is absent.��Upgrade�not�not�not�not���Via�not�not�not�not���

Request Headers

The following is a table for the request headers.

Request-Header�Client�Server�Request Values and Conditions��Accept�opt�man�“application/ipp” only. This value is the default if the client omits it��Accept-Charset�opt�man�per IANA Character Set registry. ISSUE: is this useful for IPP?��Accept-Encoding�opt�man�empty and per RFC 2068 and IANA registry for content-codings��Accept-Language�opt�man�see RFC 1766��Authorization�c-man�man�per RFC 2068. A client sends this header when it receives a 401 “Unauthorized” response and no “Proxy-Authenticate” header.��From�not�not�per RFC 2068. Because RFC recommends sending this header only with the user’s approval, it is not very useful��Host�man�man�per RFC 2068��If-Match�not�not���If-Modified-Since�not�not���If-None-Match�not�not���If-Range�not�not���If-Unmodified-Since�not�not���Max-Forwards�not�not���Proxy-Authorization�c-man�not�per RFC 2068. A client must send this header when it receives a 401 “Unauthorized” response and a “Proxy-Authenticate” header.��Range�not�not���Referer�not�not���User-Agent�not�not���Response Headers

The following is a table for the request headers.

Response-Header�Server�Client�Response Values and Conditions��Accept-Ranges�not�not���Age�not�not���Location�c-man�opt�per RFC 2068. When URI needs redirection.��Proxy-Authenticate�not�man�per RFC 2068��Public�opt�opt�per RFC 2068��Retry-After�opt�opt�per RFC 2068��Server�not�not���Vary�not�not���Warning�opt�opt�per RFC 2068��WWW-Authenticate�c-man�man�per RFC 2068. When a server needs to authenticate a client.��Entity Headers

The following is a table for the request headers.

Entity-Header�Request�Response�Values and Conditions���Client�Server�Server�Client���Allow�not�not�not�not���Content-Base�not�not�not�not���Content-Encoding�opt�man�man�man�per RFC 2068 and IANA registry for content codings. ��Content-Language�opt�man�man�man�see RFC 1766. ��Content-Length�c-man�man�c-man�man�the length of the message-body per RFC 2068. Header must be present if Transfer-Encoding is absent..��Content-Location�not�not�not�not���Content-MD5�opt�opt�opt�opt�per RFC 2068��Content-Range�not�not�not�not���Content-Type�man�man�man�man�“application/ipp” only��ETag�not�not�not�not���Expires�not�not�not�not���Last-Modified�not�not�not�not���

Security Considerations

When utilizing HTTP 1.1 as a transport for IPP, all of the security considerations specified in RFC 2068 apply. In addition, the IPP adds some additional application-specific security considerations, including denial-of-service attacks, mutual authentication, and privacy. The IPP Model document addresses IPP-specific security considerations, while RFC 2068 addresses HTTP-related security considerations.

ISSUE: the security subgroup is free to add whatever is necessary to fill out the "security considerations" section of this document. However, the IPP model document should include the bulk of security discussions that are IPP-specific.

Appendix A: Requirements with Transports other than HTTP/1.1

Some transports, such as raw TCP/IP, don’t have a way to specify length or carry along parameters supported by a transport layer, such as HTTP/1.1. An example of such a parameter is the Content-Encoding for an operation. Another example is the target URI.

This section specifies the modifications to the operation-layer encoding for transports, such as raw TCP/IP. The following changes would have to made. All of these changes are upward compatible with the encoding defined in section � REF _Ref392509638 \n �3� “� REF _Ref392509640 * MERGEFORMAT �Encoding of the Operation Layer�”.

Additional Parameter-group for HTTP header information

First there is an additional parameter-group which SHALL appear as the first parameter-group and which SHALL contain the target URI along with relevant HTTP header information, including those shown below. This parameter-group SHALL be preceded by a name-length of -4 (0xFFFC) which functions like the other negative lengths defined in section � REF _Ref392509638 \n �3� “� REF _Ref392509640 * MERGEFORMAT �Encoding of the Operation Layer�”. This special number specifies that the first parameter group contains header type information, and distinguishes it from the protocol which have these parameters outside of the operation layer.

The following table shows the mapping of HTTP headers to parameters in the operation layer.

HTTP header or other concept�IPP parameter name�Syntax Type of Parameter��URI�target-URI�uri��Connection�Close-Connection�Boolean��Accept-Charset�Accept-Charset�keyword��Accept-Encoding�Accept-Encoding�keyword��Accept-Language�Accept-Language�keyword��Content-Encoding�Content-Encoding�keyword��Content-Language�Content-Language�keyword��charset parameter�Content-Charset�keyword��miscellaneous security�if needed at this level���

The first parameter in the header parameter-group for a request SHALL be the attribute “target-URI” which is the target object of the operation.

ISSUE: should the reason-phrase be in the initial parameter group instead of the second one for responses?

Chunking of Data

Second the “parameters” and “data” of the operation layer are separated by -3 (0xFFFD) instead of -1 (0xFFFF) to denote that the following data is chunked. A chunk of length 0 denotes the end of the data. The syntax for the chunked data is:

chunked-data = *data-chunk %x00 %x00

data-chunk = data-segment-length data-segment

data-segment-length = SIGNED-SHORT ; number of octets of the data in binary

data-segment = OCTET-STRING

A data-segment contains fragments of the data. When all the data-segments are concatenated together, they form the complete data.

Revised Syntax for the Operation Layer

The following is the revised syntax for the operation layer.

ipp-message = ipp-request / ipp-response

ipp-request = version operation parameters data

ipp-response = version status parameters %xFF %xFF [data]

version = major-version minor-version

major-version = SIGNED-BYTE ; initially %d1

minor-version = SIGNED-BYTE ; initially %d0

operation = SIGNED-SHORT ; mapping from model defined below

status = SIGNED-SHORT ; mapping from model defined below

parameters = (headers / parameter-group) *(%xFF %xFE parameter-group)

headers = %xFF %xFC parameter-group

parameter-group = *parameter

parameter = single-parameter *(more-values)

single-parameter = name-length name value-length value

more-values = zero-name-length value-length value

name-length = SIGNED-SHORT ; number of octets of ‘name’

name = LALPHA *(LALPHA / DIGIT / “-” / “_”)

value-length = SIGNED-SHORT ; number of octets of ‘value’

value = OCTET-STRING

zero-name-length = %x00 %x00

data = (%xFF %xFF [full-data]) / (%xFF %xFD chunked-data)

full-data = OCTET-STRING

chunked-data = *data-chunk %x00 %x00

data-chunk = data-segment-length data-segment

data-segment-length = SIGNED-SHORT ; number of octets of the data in binary

data-segment = OCTET-STRING

SIGNED-BYTE = %x0..%xFF

SIGNED-SHORT = %x0..%xFF %x0..%xFF

DIGIT = "0".."9"

LALPHA = "a".."z"

BYTE = %x0..%xFF

OCTET-STRING = *BYTE

References

[1]	Smith, R., Wright, F., Hastings, T., Zilles, S., and Gyllenskog, J., "Printer MIB", RFC 1759, March 1995.

[2]	Berners-Lee, T, Fielding, R., and Nielsen, H., "Hypertext Transfer Protocol - HTTP/1.0", RFC 1945, August 1995.

[3]	Crocker, D., "Standard for the Format of ARPA Internet Text Messages", RFC 822, August 1982.

[4]	Postel, J., "Instructions to RFC Authors", RFC 1543, October 1993.

[5]	ISO/IEC 10175 Document Printing Application (DPA), June 1996.

[6]	Herriot, R. (editor), X/Open A Printing System Interoperability Specification (PSIS), August 1995.

[7]	Kirk, M. (editor), POSIX System Administration - Part 4: Printing Interfaces, POSIX 1387.4 D8, 1994.

[8]	Borenstein, N., and Freed, N., "MIME (Multi-purpose Internet Mail Extensions) Part One: Mechanism for Specifying and Describing the Format of Internet Message Bodies", RFC 1521, September, 1993.

[9]	Braden, S., "Requirements for Internet Hosts - Application and Support", RFC 1123, October, 1989,

[10]	McLaughlin, L. III, (editor), "Line Printer Daemon Protocol" RFC 1179, August 1990.

[11]	Berners-Lee, T., Masinter, L., McCahill, M. , "Uniform Resource Locators (URL)", RFC 1738, December, 1994.

[20]	Internet Printing Protocol: Requirements

[21]	Internet Printing Protocol/1.0: Model and Semantics

[22]	Internet Printing Protocol/1.0: Security

[23]	Internet Printing Protocol/1.0: Protocol Specification (This document)

[24]	Internet Printing Protocol/1.0: Directory Schema

[25]	S. Bradner, "Key words for use in RFCs to Indicate Requirement Levels", RFC 2119 , March 1997

[26]	H. Alvestrand, " Tags for the Identification of Languages", RFC 1766, March 1995.

[27] R Fielding, et al, “Hypertext Transfer Protocol – HTTP/1.1” RFC 2068, January 1997

[28] Marcus Kuhn, “International Standard Date and Time Notation”, ISO 8601, �http://www.ft.uni-erlangen.de/~mskuhn/iso-time.html

[29]	D. Crocker et al., “Augmented BNF for Syntax Specifications: ABNF”, draft-ietf-drums-abnf-02.txt.

Author's Address

	Robert Herriot (editor)

	Sun Microsystems Inc.

	901 San Antonio.Road, MPK-17

	Palo Alto, CA 94303

	Phone: 415-786-8995

	Fax:	 415-786-7077

	Email: robert.herriot@eng.sun.com

	Sylvan Butler

	Hewlett Packard

	Boise, ID

Paul Moore

Microsoft

	One Microsoft Way

Redmond, WA 98053

	Phone: 425-936-0908

	Fax: 425-93MS-FAX

	Email: paulmo@microsoft.com

	Randy Turner

	Sharp Laboratories

	5750 NW Pacific Rim Blvd

	Camas, WA 98607

	Phone: 360-817-8456

	Fax: : 360-817-8436

	Email: rturner@sharplabs.com

	IPP Mailing List: ipp@pwg.org

	IPP Mailing List Subscription: ipp-request@pwg.org

	IPP Web Page: http://www.pwg.org/ipp/

Other Participants:

Ron Bergman - Data Products

Sylvan Butler - HP

Keith Carter - IBM

Jeff Copeland - QMS

Roger Debry - IBM

Lee Farrell - Canon

Brian Grimshaw - Apple

Jerry Hadsell - IBM

Tom Hastings - Xerox

Stephen Holmstead

Zhi-hony Huang - Zenographics

Scott Isaacson - Novell

David Kellerman - Northlake Software

Robert Kline - TrueSpectra

Dave Kuntz - HP

Takami Kurono - Brother

Harry Lewis - IBM

Tony Liao - Vivid Image

David Manchala - Xerox

Carl-Uno Manros - Xerox

J.K. Martin - Underscore

Jay Martin - Underscore

Larry Masinter - Xerox

Bob Pentecost - HP

Patrick Powell - SDSU

Xavier Riley - Xerox

Gary Roberts - Ricoh

Stuart Rowley - Kyocera

Richard Schneider - Epson

William Wagner - Digital Products

Don Wright - Lexmark

Rick Yardumian - Xerox

Peter Zehler - Xerox

Steve Zilles - Adobe

NOTE: if I missed someone, please let me know.

INTERNET-DRAFT	IPP/1.0: Protocol Specification	July 2, 1997

Herriot, Butler, Moore and Turner	July 2, 1997, Expires January 2, 1998	[Page �PAGE�2�]

INTERNET-DRAFT

Herriot, Butler, Moore and Turner	July 2, 1997, Expires January 2, 1998	[Page �PAGE�1�]

