An Analysis of XML as the IPP protocol

Robert Herriot, Sun Microsystems

robert.herriot@eng.sun.com

Introduction

This document is intended to look at how the IPP protocol would be encoded into XML. I will also give the definition of a DTD for the IPP encoding.

When I define the syntax below, I will show them as examples to make them easier to read. Italicized names refer to syntax defined in a section by its name.

Summary of Findings

After doing the exercise of defining the IPP protocol in XML and producing a DTD, I have a better understanding of the pros and cons.

On the pro side,

· XML does have the advantage that XML parsers will become a standard part of most computers, and it provides a standard way to structure things.

· XML would also be very easy to write a parser for the small subset of XML that the IPP protocol would require. Any XML parser, as well as any IPP parser could parse such a subset.

On the con side,

· XML is lacking certain basic data types which IPP would have to invent, hoping they would be the same as a future standard.

· XML DTD’s are quite limited in what they can describe. They have even more severe limitations than context-free grammars for defining a language. The DTD is like a context free grammar, but lacks non-terminals. This means that if the DTD is to describe the allowed attributes in each operations attribute group (which differ for each operation), the name of the markup must be different for each operation. The name could be the same by having a separate DTD for each operation, which is probably the best solution.

If we wait 6 to 12 months and influence the development of XML and XSL, then XML is probably an excellent solution. But meanwhile, we need to decide whether it is best to proceed with the IPP binary protocol or an interim XML protocol. In both cases, I expect that we will have to produce a new version 2.0 of the protocol.

Entity Body

The entity body for all requests except Print-Job and Send-Document and for all responses is of type text/xml. The entity body for Print-Job requests and Send-Document requests is a multipart/related where the first part is text/xml and the second part is document data.

The remainder of this document defines the text/xml part.

Operation

I have concluded that a DTD should not be are part of the protocol. Rather it along with an English description is used to define the parser, which is either handwritten or partially generated by machine from the DTD.

A request is encoded as follows:

<?XML version= “1.0” encoding= “UTF-8”>

<request op= “Print-Job” version= “1.0” xml:lang= “en” request-id= “1”>

AttributeGroups

</ request >

where Print-Job represents one particular operation. Each operation would have its own value for the “op” XML attribute. An alternate solution is to have “Print-Job” be the name of the tag.

Note that this part of the encoding handles the XML version, the IPP version, the charset and the natural language and the request-id. The request-id could be optional with this syntax. The encoding is also optional because XML assume UTF-8 if there is no encoding specified and the first two bytes are not 0xFEFF (which means UTF-16) follows.

A response if encoded as follows

<?XML version= “1.0” encoding= “UTF-8”>

< response status = “200” version= “1.0” xml:lang= “en” request-id= “1”>

AttributeGroups

</ response >

AttributeGroups

AttributeGroups are a sequence of AttributeGroup’s. The operation AttributeGroup is encoded:

<operationGroup>

Attributes

</operationGroup>

The job AttributeGroup, printer AttributeGroup, and unsupported AttributeGroup are encoded in a similar way. A Print-Job operation would be encoded as follows (where Attributes is still not defined).

<?XML version= “1.0” encoding= “UTF-8”>

< request op= “Print-Job” version= “1.0” xml:lang= “en” request-id= “1”>

<operationGroup>

Attributes

</operationGroup>

<jobGroup>

Attributes

</jobGroup>

</ request >

Attributes

There are several ways to encode an Attribute. The examples below use “priority” which is an integer and “sides-supported” which is a set of keywords.

1. Represent the value with no type identifier, and let the DTD specify the type. This solution is simple but doesn’t work for deeply nested values.

<AttributeName > AttributeValue </attributeName>

An Attribute consists of a AttributeName and an AttributeValue. The AttributeName is inside the tag and represents any name from the model document.

E.g.

< priority>50</priority>

< sides-supported >one-sided two-sided-long-edge</ sides-supported >

2. Represent the value as in the previous case, but have a “type” XML attribute whose value specifies the type of the value between the start and end tags of they attribute name. This has a similar problems with nested values.

<AttributeName TypeInformation> AttributeValue </attributeName>

E.g.

< priority type = “integer”> 50</priority>

< sides-supported type = “keyword-sequence”> one-sided two-sided-long-edge
</ sides-supported >

3. Represent the value with an empty element tag whose name specifies the type and whose XML attribute contains the value,

<AttributeName optionalStuff> AttributeValue </attributeName>

E.g.

< priority><integerType value = “50”></priority>

< sides-supported >
 < setOfType >
 <sidesType value = “one-sided”>
 <sidesType value = “two-sided-long-edge”>
 </ setOfType >
</ sides-supported >

The <seq> is redundant.

The AttributeValue is defined in the next section with 2 options: Option B for cases 1 and 2 above and Option A for case 3 above.

One of the advantages of case 3 is that it makes conversion from XML IPP to binary IPP easier because the value-tag need for the binary IPP is easy to determine.

AttributeValue

The sections below give the encoding for each IPP type using options A and B specified in the previous section.

Note that I have surrounded each type of value with tags that specify its type so that there is a simple one-to-one mapping between the current IPP encoding and the XML encoding.

Text and TextWithLanguage

For option A, a value of type text is encoded:

<textType>textValue</textType>

A value of type textWithLanguage is encoded:

<textType xml:lang = “de”>textValue</ textType>

I have encoded text with start and end tags because I want to be able to specify the natural-language when necessary and have a similar structure for both text and textWithLanguage.

The textValue is the octet-string of text with the encoding specified by “encoding” attribute at the beginning of the entity. Any occurrences of “<” and “&” are replaced by “<” and “&” respectively.

Name and NameWithLanguage

The encoding is similar to text.

For option A, a value of type name is encoded:

<nameType>nameValue</nameType>

A value of type nameWithLanguage is encoded:

<nameType xml:lang = “de”> nameValue</ nameType>

The nameValue is the octet-string of text with the encoding specified by “encoding” attribute at the beginning of the entity. Any occurrences of “<” and “&” are replaced by “<” and “&” respectively.

For option B, name and nameWithLanguage, the value is encoded as the nameValue is in option A. For nameWithLanguage the language is an XML attribute of the attribute name.

Charset

For option A, a value of type charset is encoded:

<charsetType value= “charsetValue”/>

The charsetValue is the octet-string of text with the encoding specified by “encoding” attribute at the beginning of the entity. Any occurrences of “<” and “&” are replaced by “<” and “&” respectively.

Exception: The value of the charset operation attribute is encoded with just the charsetValue and appears in the markup as:

<?XML version= “1.0” encoding= “UTF-8”>

For option B, charset, the value is encoded as charsetValue in option A.

NaturalLanguage

For option A, a value of type naturalLanguage is encoded:

< languageType value= “languageValue”/>

The languageValue is the octet-string of text with the encoding specified by “encoding” attribute at the beginning of the entity. Any occurrences of “<” and “&” are replaced by “<” and “&” respectively.

Exception: The value of the natural-language operation attribute and the value of the language for textWithLanguage and nameWithLanguage are encoded with just the languageValue and appear in the markup as:

<Print-Job version= “1.0” xml:lang= “en” request-id= “1”>

<textType xml:lang = “de”>textValue</ textType>

<nameType xml:lang = “de”> nameValue</ nameType>

For option B, naturalLanguage, the value is encoded as languageValue in option A.

MimeMediaType

For option A, a value of type mimeMediaType is encoded:

< mimeMediaType value= “mimeMediaValue”/>

The mimeMediaValue is the octet-string of text with the encoding specified by “encoding” attribute at the beginning of the entity. Any occurrences of “<” and “&” are replaced by “<” and “&” respectively.

For option B, mimeMediaType, the value is encoded as mimeMediaValue in option A.

KeywordType

For option A, a value of type keywordType is encoded:

< keywordType value= “keywordValue”/>

There is a separate keywordType for each set of keywords so that the DTD can be made to work. E.g. the keywords for sides would belong to a “sidesType”.

The keywordValue is the octet-string of text with the encoding specified by “encoding” attribute at the beginning of the entity. Any occurrences of “<” and “&” are replaced by “<” and “&” respectively.

Note: the DTD can specify all allowed values of keywords for each keyword type.

For option B, keywordType, the value is encoded as keywordValue in option A.

UriType

For option A, a value of type uriType is encoded:

< uriType value= “uriValue”/>

The uriValue is the octet-string of text with the encoding specified by “encoding” attribute at the beginning of the entity. Any occurrences of “<” and “&” are replaced by “<” and “&” respectively.

For option B, uriType, the value is encoded as uriValue in option A.

UriSchemeType

A value of type uriSchemeType is encoded:

< uriSchemeType value= “uriSchemeValue”/>

The uriSchemeValue is the octet-string of text with the encoding specified by “encoding” attribute at the beginning of the entity. Any occurrences of “<” and “&” are replaced by “<” and “&” respectively.

For option B, uriSchemeType, the value is encoded as uriSchemeValue in option A.

BooleanType

For option A, a value of type booleanType is encoded:

< booleanType value= “booleanValue”/>

The booleanValue is the octet-string of text with the encoding specified by “encoding” attribute at the beginning of the entity. It has two values “true” and “false”.

For option B, booleanType, the value is encoded as booleanValue in option A.

IntegerType

For option A, a value of type integerType is encoded:

< integerType value= “integerValue”/>

The integerValue is the octet-string of decimal digits with the encoding specified by “encoding” attribute at the beginning of the entity.

For option B, integerType, the value is encoded as integerValue in option A.

EnumType

A value of type enumType is encoded:

< enumType value= “enumValue”/>

There is a separate enumType for each set of enums so that the DTD can be made to work.

The enumValue is the octet-string of decimal digits with the encoding specified by “encoding” attribute at the beginning of the entity.

For option B, enumType, the value is encoded as enumValue in option A.

DateTimeType

For option A, a value of type dateTimeType is encoded:

Option 1:

< dateTimeType value= “dateTimeValue”/>

where dateTimeValue is a string with the syntax suggested by RFC1903 and ISO 8601:

year-month-day,hour:minutes:seconds.deciSeconds: signedHoursFromUTC:minutesFromUTC

Option 2: (by example with today’s date)

<dateTimeType year= “1998” month= “1” day=”22” hour = “18” minutes= “32” seconds= “59” deci-seconds = “4” hoursFromUTC = “-8” minutesFromUTC= “0”/>

The dateTimeValue from option 1 and each attribute value in option 2 is an octet-string with the encoding specified by “encoding” attribute at the beginning of the entity.

Option 1 is likely to be a format adopted by XML in the near future.

For option B, dateTimeType, the value is encoded as dateTimeValue in option A.

Resolution

For option A, a value of type resolutionType is encoded:

<resolutionType xfeed= “300” feed= “600” units= “in”/>

The value of each attribute value is an octet-string with the encoding specified by “encoding” attribute at the beginning of the entity. Any occurrences of “<” and “&” are replaced by “<” and “&” respectively.

For option B, resolutionType, the value is encoded as “300:600:in” or perhaps as in option A.

Things get difficult for option B with stuctured values like this.

RangeOfInteger

For option A, a value of type rangeOfIntegerType is encoded:

<rangeOfIntegerType lower= “2” upper= “40”/>

The value of each attribute value is an string of decimal digits with the encoding specified by “encoding” attribute at the beginning of the entity. Any occurrences of “<” and “&” are replaced by “<” and “&” respectively.

For option B, keywordType, the value is encoded as “2:40” or perhap as in option A.

SetOf

For option A, a value of type setOfType is encoded:

<setOfType> zeroOrMore-AttributeValue </setOfType>

Between start and end tags for setOfType, there are zero or more AttributeValue’s, all of which are defined in this section. For good DTD validation, there should be a different value of setOfType for each type, though this is probably too large a burden. Below is an example of a value for sides-supported:

<setOfSidesType>

<sidesType value= “one-sided”/>

<sidesType value= “two-sided-long-edge”/>

</setOfSidesType>

Note that the empty set is unambiguously represented as:

<setOfSidesType>

</setOfSidesType>

or by

<setOfSidesType/>

For option B, the general solution is more difficult. Many values can be encoded by separating the values with a space. But as we have found in the past, this doesn’t work for some types and doesn’t work for two level nesting.

Out of Band Values

For option A, the out-of-band values are represented by special types. There are two options:

Option 1:

<unsupported/>

<unknown/>

<no-value/>

Option 2:

<out-of-band value= “unsupported”/>

<out-of-band value= “unknown”/>

<out-of-band value= “no-value”/>

If any attribute can take any out-of-band value then option 2 allows a client of known that it has an out-of-band value when it doesn’t recognize the particular value. But if some attributes allow some out-of-band values but not others, then option 1 allows the DTD to say so.

For option B, there is no easy way to represent out-of-band values. Either there has to be special syntax for out of band values – that limits values of type text. Another solution is to have an XML attribute “out-of-band” in the attribute name markup. This XML attribute has the value of “unsupported”, “unknown” and “no-value”. The actual value of the attribute is left empty. For the option B case where the XML attribute “type” exists, it could have a value of “out-of-band” and the value outside the markup could be “unsupported” or whatever.

Dictionaries

For option A, I will define dictionaries in order to see how versatile XML is. The encoding is:

<dictionaryType> Attributes <dictionary/>

where Attributes is defined above and dictionaryType is probably a different name for each dictionary. Here’s an example:

<fooDictionary>

<foo><integerType value = “2”/></foo>

<bar><text>this is a sample</text></bar>
< fooDictionary />

For option B, the structure of <fooDictionary> would still be necessary. Each element of the dictionary, however, would conform to option B.

DTD for IPP

After some thinking about the DTD, I have concluded that there must be a separate DTD for each operation request and each operation response. With 10 operations, that means 20 DTDs. They can share some of common stuff. Designing a DTD is an art like designing the grammar of a programming language. The more carefully the grammar is specified, the harder it is to read.

The following is the DTD for Get-Printer-Attributes request for option A.

<!DOCTYPE request [

<!ELEMENT Get-Printer-Attributes “(operationGroup)”>

<!ATTLIST Print-Job version CDATA #REQUIRED
 xml:lang CDATA #REQUIRED
 request-id CDATA #IMPLIED >

<!ELEMENT operationGroup “(printer-uri | requesting-user-name ?| requested-attributes? |
 document-format?)”>

<!ELEMENT printer-uri “uriType”>

<!ELEMENT uriType “EMTPY”>

<!ATTLIST uriType value CDATA #REQUIRED >

<!ELEMENT requesting-user-name “nameType”>

<!ELEMENT nameType “(#PCDATA)+”>

<!ATTLIST nameType xml:lang NMTOKEN #IMPLIED >

<!ELEMENT requested-attributes “keywordSetOfType”>

<!ELEMENT keywordSetOfType “(keywordType)+”>

<!ELEMENT keywordType “ANY”>

<!ATTLIST keywordType value NMTOKEN #REQUIRED >

<!--requested-attributes could be defined as -->

<!ELEMENT requested-attributes “SetOfType”>

<!ELEMENT SetOfType “ANY”>

<!ELEMENT keywordType “ANY”>

<!ATTLIST keywordType value NMTOKEN #REQUIRED >

<!ELEMENT document-format “mimeMediaType”>

<!ELEMENT mimeMediaType “EMTPY”>

<!ATTLIST mimeMediaType value CDATA #REQUIRED >

]>

This example defines much of what is allowed, but leaves some parts undefined. The DTD gets more difficult for the Unsupported attributes if it attempts to enumerate the attributes that can come back because each attribute now has values that would otherwise not validate.

01/23/98
5
An Analysis of XML as the IPP Protocol of 8

