SUBJECT: IPP Notification spec ISSUES and agreements

Date: 7/20/01; version 0.4
File: notification-clarification-agreements.doc

We held the telecon, Wednesday, July 18, 2001 and reached the following agreements on the Event Notification specs.

Attendees: Carl Kugler (IBM), Harry Lewis (IBM), Ted Tronson (Novell), Marty Joel (Netreon), Carl-Uno Manros (Xerox), Tom Hastings (Xerox).

1 Summary of agreements

1. Base Event Notifications spec: We agreed to clarify that the Printer MUST send Event Notifications for any given Subscription Object in time stamp order, but MAY interleave Event Notifications from other Subscription Objects. See explicit text below. This clarification will be included in the updated Internet-Draft requested by our Area Director, Ned Freed, along with his requested updates.

2. IPPGET spec: We agreed to a number of changes and agreed that this spec needs another WG Last Call. Because of the number of changes, we will need more review before starting the WG Last Call (again) . IPPGET is the only REQUIRED Delivery Method for IPP FAX, so it is worth having the second WG Last Call, now that we are gaining some implementation experience. The Area Director is still reviewing the previous Internet-Draft we sent last Fall, and we will request that the new version be substituted following the IETF procedures for this, after the Last Call completes. The IPPGET spec changes are:

1. Change the terminology in IPPGET not to use “push”, since the term “push” outside of IPP Notification means create the connection as well as send. In IPPGET use the term “wait mode” instead.

2. Clarify that a Printer that supports the IPPGET Delivery Method, MUST use HTTP chunking (HTTP/1.1 required feature) in the Get-Notifications response if it keeps the connection open, i.e., honors the client’s request for “wait mode”.

3. Clarify that “using the Get-Jobs model for returning multiple groups of attributes” means that the Printer returns the ‘end-of-attributes’ (0x03) tag exactly once at the end of the last Get-Notifications Response to indicate that there are no more events that will come because the Subscription Object(s) have all been cancelled/deleted.

4. Use multi-part/related for a Get-Notifications Response for Event Wait Mode. Each batch of Event Notifications will be separate application/ipp MIME type under the multi-part/related, but only the last one ends with the ‘end-of-attributes’ (0x03) tag.
5. REQUIRE URI matching rules for ippget scheme (for example, the scheme name and host name are case insensitive).
6. REQUIRE that a Printer MUST return the “notify-recipient-uri” value exactly as submitted by the Subscribing Client (no case conversion or other changes).

7. Reduce the length of the “notify-recipient-uri” attribute for ippget to 255 octets (since this doesn’t really specify a resource and an implementation may want to keep a canonical form copy as well).

8. In order to improve the searching efficiency of all the Subscription Objects on a Get-Notifications and to allow the client to be certain of getting events from only one Subscription object, allow the client to supply the “notify-subscription-id”, the “notify-recipient-uri” or both operation attributes. When the client supplies the “notify-subscription-id”, the Printer only returns events associated with that Subscription Object. The Printer MUST support both operation attributes and MUST reject a request which has neither and return the ‘client-error-bad-request’ status code. If only the “notify-subscription-id” is supplied, the Printer MUST check that the identified Subscription object’s “notify-recipient-uri” attribute matches the ‘ippget’ scheme (case insensitive).
9. Change the “notify-get-interval” (integer(0:MAX)) attribute so that the Printer always returns it by itself in a separate Event Notifications Attribute Group, instead of being returned in the Operation Attributes Group. The Printer MUST return it if and only if (1) it is too busy and is rejecting the request, (2) the client didn’t ask for Event Wait Mode, or (3) the Printer wants to leave Event Wait Mode on the first or any subsequent response.
10. Do not generalize Get-Notifications for use with indp or mailto Delivery Methods. REQUIRE the Printer to reject the Get-Notifications Request if the scheme is not ‘ippget’. But allow a future Delivery Method Document to use the Get-Notifications operation if polling makes sense for that Delivery Method

11. Don’t change the Get-Notifications operation name and keep it in the ippget spec.

12. Change the sense of the Get-Notifications “notify-no-wait” (boolean) operation attribute to a positive “notify-wait” (boolean), so that omitted and ‘false’ mean the easier non-wait operation.

13. Rename “notify-ippget-redirect” (uri) to “redirect-uri” (uri), so that it could in principle be used for other operations.

14. Rename “suggested-ask-again-time-interval” (integer(0:MAX)) to “notify-get-interval”, to shorten it, and indicate that it is for notification, but only events returned by the Get-Notifications operation.

15. Rename “begin-to-expire-time-interval” (integer(0:MAX)) to “ippget-event-time-to-live”, to shorten it somewhat, use recognized terms for this concept, and indicate that it is for events, but only ippget events.

16. Clarify that for Subscriptions that contain Job events, that the Subscription Object that has the ippget scheme MUST stay around for the “ippget-event-time-to-live” value and so MUST the corresponding Job object, so that the Notification Recipient can query the Job after receiving the ‘job-completed’ Event Notification. (For the other Delivery Methods, the usual Job History mechanism can be used to retain the Job objects after the job completion, so that the Notification Recipient can query the Job object after receiving the ‘job-completed’ Event Notification.)

17. Clarify that the Cancel-Subscriptions operation does not need to keep the Subscription object after the request, no matter what kind of Delivery Method it contains. Therefore, any events associated with the Subscription object MUST NOT be returned by the Get-Notifications operation after the Cancel-Subscription operation for that Subscription Object.

2 Clarifications to the ordering that the Printer sends Event Notifications

In the Base Event Notifications spec [ipp-ntfy] section 9 after paragraph 2 add the following text:

Event Notification Ordering:

When a Printer sends Event Notifications, the Event Notifications from any given Subscription Object MUST be in time stamp order, i.e., in order of increasing “printer-up-time” attribute value in the Event Notification (see Table 5). These Event Notifications MAY be interleaved with those from other Subscription Objects, as long as those others are also in time stamp order. The Printer MUST observe these ordering requirements whether sending multiple pending Events as multiple separate Event Notifications or together in a single Compound Event Notification.

If a Subscribing Client wants the Printer to send certain Event Notifications in time stamp order, the Subscribing Client uses a single Subscription Object. Even so, depending on the underlying transport, the actual order that a Notification Recipient receives separate Event Notifications may differ from the order sent by the Printer (e.g., email).

Example: Consider two Per-Printer Subscription Objects: SO1 and SO2. SO1 requests ‘job-state-changed’ events and SO2 requests ‘printer-state-changed’ events. The number in parens is the time stamp. The following Event Notification sequences are the only ones that conform to the ordering requirements for the Printer to send the Event Notifications:

(a) SO1: ‘job-created’ (1000), SO1: ‘job-stopped’ (1005), SO1: ‘job-completed’ (1009), SO2: ‘printer-stopped’ (1005)

(b) SO1: ‘job-created’ (1000), SO1: ‘job-stopped’ (1005), SO2: ‘printer-stopped’ (1005), SO1: ‘job-completed’ (1009)

(c) SO1: ‘job-created’ (1000), SO2: ‘printer-stopped’ (1005), SO1: ‘job-stopped’ (1005), SO1: ‘job-completed’ (1009)
(d) SO2: ‘printer-stopped (1005), SO1: ‘job-created’ (1000), SO1: ‘job-stopped’ (1005), SO1: ‘job-completed’ (1009)
Examples (b) and (c) are interleaved; examples (a) and (d) are not and may not be appropriate for some Delivery Methods.

IPPGET:

Make the following changes to the first paragraph in the Get-Notifications Response, section 5.2 (I put [] around new text, but deleted old text without indication):

Group 3 through N: Event Notification Attributes

The Printer responds with one Event Notification Attributes Group per matched Event Notification. [The entire response is considered a single Compound Event Notification (see [ipp-ntfy]).] The initial matched Event Notifications are all un-expired Event Notifications associated with the matched Subscription Objects [and MUST follow the “Event Notification Ordering” requirements for Event Notifications within a Compound Event Notification specified in [ipp-ntfy] section 9].

If the Notification Recipient has selected the option to wait for additional Event Notifications [(the “notify-wait” attribute was set to ‘true’], the Printer {sends} subsequent Event Notifications in the response [each time it processes additional Events]. [Each time the Printer sends such Event Notifications, their ordering MUST follow the “Event Notification Ordering” requirements in [ipp-ntfy] section 9.]

[Note: If a Notification Recipient performs two consecutive Get-Notifications operations, the time stamp of the first Event Notification in the second Get-Notifications Response may be less than the time stamp of the last Event Notification in the first Get-Notification Response. This happens because the Printer sends all unexpired Event Notification according to the ordering specified in [ipp-ntfy] and some Event Notifications from the first Get-Notifications operation may not have expired by the time the second Get-Notifications operation occurs.]

INDP:

In INDP section 8.1 Send-Notifications Request, 2nd paragraph (I put [] around the new text):

The Printer composes the information defined for an IPP Notification [ipp-ntfy] and sends it using the Send-Notifications operation to the Notification Recipient supplied in the Subscription object. [The ordering of separate Send-Notifications operations that a Printer sends MUST follow the “Event Notification Ordering” requirements in [ipp-ntfy] section 9.]

In INDP section 8.1.1 Send-Notifications Request (I put [] around the new text):

Group 2 to N: Event Notification Attributes

In each group 2 to N, each attribute is encoded using the IPP rules for encoding attributes [RFC2910] and [the attributes within a group] MAY be encoded in any order. Note: the Get-Jobs response in [RFC2911] acts as a model for encoding multiple groups of attributes. [The entire request is considered a single Compound Event Notification and MUST follow the “Event Notification Ordering” requirements for Event Notifications within a Compound Event Notification specified in [ipp-ntfy] section 9.]

MAILTO:

MAILTO section 6, add the following after the existing 2nd paragraph:

While the “Event Notification Ordering” section in [ipp-ntfy] section 9 specifies ordering requirements for Printers when sending separate Event Notifications, email messages are not guaranteed to arrive in the order sent so that the Notification Recipient may not receive them in the same order.

MAILTO section 6 Event Notification Content, right before section 6.1 (I put [] around the new text):

The Event Notification content has two parts, the headers and the message body. The headers precede the message body and are separated by a blank line (see [RFC 822]).

[A Printer implementation MAY combine several Event Notifications into a single email message body. Such an email message is considered a single Compound Event Notification and MUST follow the “Event Notification Ordering” requirements for Event Notifications within a Compound Event Notification specified in [ipp-ntfy] section 9.]

