Subj: Proposal for extending IPP by adding a 'dictionary' attribute syntax

From: Tom Hastings, Bob Herriot, and Roger deBry

Date: 3/31/98, version 0.92

File: ipp-dict-attr-syntaxv092.doc

There is one issue in Section 5.0.

1 Problem Statement

There is no good way to add attributes that contain several fields, whether the fields are mandatory or optional. Instead of each new attribute that needs more than one field (struct), requiring an ad hoc attribute syntax, such as we have done for the 'resolution' attribute syntax for use in the "printer-resolution" attribute, it would be desirable to have a simple, general mechanism for representing multi-field values. It would also be desirable to allow fields to be omitted, when the attribute specification allows that. This mechanism would be useful for both new attributes that we might add to the IPP standard, that might be registered, or that implementers might implement as private extensions.

2 Summary of the attribute syntax alternative

A number of alternatives were considered. See the last section for a list and the reasons for their rejection.

The proposal is to add a new attribute syntax, called 'dictionary'. Any attribute of type 'dictionary' shall have a value that is a set of unordered attributes, where each attribute MAY be single-valued or multi-valued as specified for the dictionary attribute. Since the attribute value has a length, like any other attribute value, IPP objects not supporting the attribute can easily skip over the entire attribute value, i.e., skip over the entire set of attributes that make up the dictionary value.

3 Requirements for the suggested dictionary mechanism

The dictionary mechanism for use with IPP needs to have the following semantic properties:

1. The dictionary mechanism provides a way to supply and query a set of attributes as a logical unit. Then each 'field' that is present in the dictionary would be self-identifying by its attribute name.

2. The attributes in a dictionary are unordered. Therefore, an IPP object MUST be able to accept attributes in a dictionary in any order.

3. The semantics of a dictionary attribute specifies which attributes in a dictionary instance are MANDATORY for the IPP object to support and which are OPTIONAL for the IPP object to support when the IPP object supports that dictionary attribute..

4. The semantics of a dictionary attribute specifies which attributes in a dictionary instance are required for the requester to supply and which the requester may omit.

5. A dictionary attribute could be single valued, i.e., with one dictionary value consisting of a set of attributes, or could be multi-valued, i.e., with multiple dictionary values, each consisting of a set of attributes.

6. An attribute in a dictionary value can be single valued or multi-valued as well according to the specification of the dictionary attribute.

7. As with all attribute values, if an IPP object does not support a dictionary attribute, it must be easy for the IPP object to ignore each dictionary attribute value.

8. The syntax of each dictionary value is the same as a group of attributes in a request or response, so each attribute in a dictionary value instance has its keyword name, its attribute syntax code, and its value.

9. An implementer MAY support additional registered or private attributes in a dictionary. In other words, a dictionary is extensible, just like an attribute group in an operation or response.

10. Finally, an attribute in a dictionary value can be itself a dictionary, so that nesting could be allowed, if the specification of a dictionary attribute allowed a dictionary attribute to be contained in its dictionary.

4 Examples of dictionary usage

This section describes four dictionary Job Template examples: "printer-resolution", "job-notify", "job-start-page-contents", and "postal-mail-disposition" attributes. The "printer-resolution" attribute only contains single-valued attributes, while the "job-notify" attribute contains multi-valued attributes.

4.1 Example a: "printer-resolution" Job Template attribute

For example, the new "printer-resolution" attribute was defined using a very ad hoc 'resolution' attribute syntax. Had we had the dictionary attribute syntax, we might have chosen to use it here, though we wouldn't have had to either. If we did use the 'dictionary' attribute syntax for the "resolution", the attribute value would contain the following attributes: "resolution", "cross-feed-resolution", and "resolution-units". We could have also specified that the "cross-feed-resolution" attribute is OPTIONAL and when omitted, the cross-feed resolution is the same as the feed resolution. We could have also specified that the "resolution-units" attribute is OPTIONAL and when omitted, the resolution units are dots per inch.

Attribute name
syntax
in request

"resolution"
integer
required

"cross-feed-resolution"
integer
optional

"resolution-units"
enum
optional

The Printer object could represent the default values as a single dictionary value.

The Printer object could indicate the combinations that are supported by three sets of dictionary values which represent 300x300, 600x300, and 600x600 dpi, respectively (300x600, say, is not supported).

4.2 Example b: "job-notify" Job Template attribute

In order to meet the IPP notification requirements, the requester must be able to supply one or more notification profile values, where each profile value consists of a set of "job-notify-events", one "job-notify-method", (which does not include the target for delivery, so that the system administrator can specify a default delivery method, which might include TCP/IP sockets), multiple "job-notify-addresses", one "job-notify-natural-language", and possibly multiple "job-notify-additional-requested-attributes". There might be a similar multi-valued "printer-notify" Printer object dictionary attribute that is set by means outside of the IPP/1.0 protocol, but is independent of jobs, so that they would specify notification to operators. Both the "job-notify" and the "printer-notify" dictionary attributes are MULTI-VALUED and contain attributes that themselves are MULTI-VALUED.

The "job-notify" Job Template dictionary Job attribute would have dictionary values with the following syntax:

Attribute name
syntax
in request

"job-notify-method"
uriScheme
optional

"job-notify-events"
1setOf enum
optional

"job-notify-addresses"
text
required

"job-notify-natural-language"
naturalLanguage
optional

"job-notify-additional-requested-attributes"
1setOf keyword
optional

A Print-Job request could supply the dictionary attribute values in order to send immediate 'job-aborted' and 'job-canceled' events to Smith (himself) in English and e-mail 'job-completed' to Jones and White in French.

A system administrator could define the following default value for the corresponding "job-notify-default" default attributes:

"job-notify-method"
'mailto'

"job-notify-events"
'job-completed'

"job-notify-natural-language"
'en'

A system administrator could define the following two sets of dictionary values for the corresponding "job-notify-supported" supported Printer attribute:

1) mailto method supports 'job-completed', 'job-canceled', and 'job-aborted' events using English, French, U.S. English, and German

2) 'sense' and 'tct/ip-socket' methods support 'job-received', 'job-started', 'job-completed', 'job-aborted', 'job-canceled' events in English only.

4.3 Example c: Start page fields supplied by the end-user

As a third example of a dictionary, an attribute could represent the fields that the submitter wishes to be printed on the job-start page. The name of the attribute might be: "job-start-page-contents". The dictionary value might include: "job-name", "user-name", "job-comment", "account-name", "job-disposition", "job-delivery", etc. where the values of the attributes in the dictionary are printed after each attribute name on the job-start-page.

4.4 Example d: Postal mailing address

As a final example of a dictionary, an attribute could represent a postal mailing address for the output. The name of the attribute might be "postal-mail-disposition". The dictionary attribute might have the following specification and support requirements if the "postal-mail-disposition" dictionary attribute is supported at all:

Attribute name
syntax
in request
IPP object support

"addressee-name"
text
required
MANDATORY

"company-name"
text
optional
OPTIONAL

"internal-mail-stop"
text
optional
OPTIONAL

"apartment-number
text
optional
MANDATORY

"street-address"
text
required
MANDATORY

"city-or-town
text
required
MANDATORY

"state"
text
required
MANDATORY

"postal-zone
text
required
MANDATORY

"country"
text
optional
OPTIONAL

"phone-numbers
1setOf text
optional
OPTIONAL

5 Detailed description of alternative 1: 'dictionary' attribute syntax

Register the following attribute syntax, written in the style of section 4.1 Attribute Syntaxes of the IPP Model specification:

4.1.n 'dictionary'

A set of unordered attributes, where each attribute MAY be single-valued or multi-valued as specified for the dictionary attribute. As in the attribute sets that are passed in operations, an IPP object SHALL accept the attributes in a dictionary value in any order and no attribute SHALL occur more than once in a dictionary. However, if the same attribute does occur more than once in a dictionary by error, the IPP object SHALL reject the operation and SHALL return the 'client-error - bad syntax' error code.

The specification of the attribute that uses the 'dictionary' attribute syntax SHALL specify:

1. as with any attribute, whether the attribute is single-valued (attribute syntax = 'dictionary) or multi-valued (attribute-syntax = '1setOf dictionary').

2. For each attribute in the dictionary value, whether the IPP object MUST implement the attribute (MANDATORY) or MAY implement the attribute (OPTIONAL).

3. for each attribute in the dictionary value, whether the attribute's presence is required or optional.

4. for each attribute permitted in the dictionary value, the completed specification of that attribute shall be included or inferred by reference to the specification of that attribute elsewhere, including its keyword name, its attribute syntax, including '1setOf, if it is multi-valued, and the semantics of the values.

A dictionary may contain another dictionary, i.e., may include an attribute whose attribute syntax is, itself, a 'dictionary', if the specification of the (outer) dictionary attribute allows.

Additional attributes may be registered for use in a dictionary attribute.

Implementers may support additional private attributes in a dictionary value.

ISSUE: What should the maximum size of a dictionary value be? If it is much bigger than the current maximum of 1023 octets, it may not be safely ignored by existing parsers. Is 2047 octets sufficiently big, without being a problem to existing parsers?

5.1 Example a: "printer-resolution" Job Template attribute

A requester can specify 300 dpi as:

"printer-resolution" = { "resolution" = 300 };

and 300 x 600 dpi as:

"printer-resolution" = { "resolution" = 300, "cross-feed-resolution" = 600 };

A system administrator or vendor can specify the 300x300, 600x300, and 600x600, as:

"printer-resolution-supported" =

{ "resolution" = 300 },

{ "resolution" = 600, "cross-feed-resolution" = 300 },

{ "resolution" = 600 }

5.2 Example b: "job-notify" Job Template attribute

A requester for a Print-Job request could supply the following parallel attribute values in order to send immediate 'job-aborted' and 'job-canceled' events to Smith (himself) and e-mail 'job-completed' to Jones and White :

"job-notify" =

{
"job-notify-method" =
'tcpip-sockets'

"job-notify-events" =
'job-aborted', 'job-canceled'

"job-notify-addresses" =
'Smith' },

{
"job-notify-method" =
'mailto'

"job-notify-events" =
'job-completed'

"job-notify-addresses" =
'Jones' , 'White'

"job-notify-natural-language" =
'fr' }

A system administrator could define the following default value for the corresopnding "job-notify" default parallel attributes:

"job-notify-default" =

{
"job-notify-method" =
'mailto'

"job-notify-events" =
'job-completed'

"job-notify-natural-language"
'en' }

A system administrator could define the following sets of dictionary values for the corresponding "job-notify" supported attributes:

"job-notify-supported =

{
"job-notify-method" =
'mailto'

"job-notify-events" =
'job-completed', 'job-aborted',

'job-canceled'

"job-notify-natural-language" =
'en', 'fr', 'en-us', 'de' },

{
"job-notify-method" =
'sense', 'tcpip-sockets'

"job-notify-events" =
'job-received', 'job-started',

'job-completed', 'job-aborted',

'job-canceled'

"job-notify-natural-language" =
 'en' }

6 Encoding

This section shows the encoding for the alternative of representing a dictionary as a new attribute syntax. The following example is written in the style of the IPP/1.0 "Encoding and Transport" (nee "Protocol") document.

Octets
Symbolic Value
Protocol field
comments

0x34
dictionary type
value-tag
"job-notify" attribute

0x000a

name-length

job-notify
job-notify
name

0x0073

value-length
115 octets in 1st dict value

0x44
keyword type
value-tag
"job-notify-method" attribute

0x0011

name-length

job-notify-method
job-notify-method
name

0x000d

value-length

tcpip-sockets
tcpip-sockets
value

0x44
keyword type
value-tag
"job-notify-events" attribute

0x0011

name-length

job-notify-events
job-notify-events
name

0x0b

value-length

job-aborted
job-aborted
value

0x44
keyword type
value-tag
start of 2nd job-notify-events value

0x0000

name-length
0 length means next multiple value

0x000c

value-length

job-canceled
job-canceled
value

0x42
name type
value-tag
"job-notify-addresses" attribute

0x0014

name-length

job-notify-addresses
job-notify-addresses
name

0x0005

value-length

Smith
Smith
value
end of 1st dictionary value

0x34
dictionary-type
value-tag
start of 2nd dictionary value

0x0000

name-length
0 length mean next multiple value

0xnnnn
0xnnnn
value-length
nnnn octets in 2nd dict value

0x44
keyword type
value-tag
"job-notify-method" attribute

0x0011

name-length

job-notify-method
job-notify-method
name

0x0006

value-length

mailto
mailto
value

...

nnnn octets of the next dict value

7 Rejected alternatives for a dictionary mechanism

This section lists the alternatives we considered for adding a new attribute syntax to represent a dictionary value.

1. No maximum length for the new attribute syntax: 'dictionary'. If an IPP object supports dictionary it has to read a piece at a time. If it doesn't it has to be able to ignore an arbitrarily long data value. See the encoding example in the next section.

Reason for rejection: Not completely compatible with current parsers that have a fixed butter size for entities of around 1023 octets, the current IPP data type maximum.

2. Have a 2047 octet max length, continueDictionary as a second attribute syntax and endDictionary so that dictionaries can nest.

Reason for rejection: More complexity.

3. Have a 2047 octet max length but allow repeated instances of an attribute to append additional dictionary values.

Reason for rejection: Not the current procedure for duplicate attributes; the IPP Object is to return an error.

4. Add a new group tag to represent a dictionary value somehow. Groups do NOT have lengths and existing parsers are supposed to ignore group tags they don't understand.

Reason for rejection: Not completely compatible with existing parsers.

5. Add an out-of-band value that indicates that this attribute was the beginning of a dictionary and add an attribute that marked the end of the dictionary value.

Reason for rejection: Not completely compatible with existing parsers. Existing parser would try to interpret the contents of the dictionary as regular attributes.

6. Extend the attribute naming mechanism to include a dictionary name and a dictionary index for use with multi-valued dictionaries. Use the colon (":") to separate component names. Thus if foo is a set of dictionaries, then "foo:1:x" is the name that accesses field x of the 2nd dictionary of attribute foo (indexing is 0 based). Leaving off the syntax after either colon, is interpreted as a wild card meaning all values with the prefix up to the colon.

Reason for rejection: Changing the naming more of a change than is necessary with the current 1setOf 1setOf proposal, which does not change the naming and does not add an attribute syntax.

7. Add a numeric instance number to the end of parallel attributes, i.e., "job-notify-method-supported-1".

Reason for rejection: Not needed to be able to address a particular instance of a parallel attribute value.

8. Use the semantics of parallel multi-valued attributes that we have in IPP/1.0, such as we already have for the "printer-uri-supported" and "uri-security-supported" Printer attributes, in order to achieve the effect of multi-valued dictionaries containing single values attributes. In order to represent the effect of a dictionary which contains attributes that are multi-valued, we only need to introduce the model semantics of: 1setOf 1setOf X as an attribute syntax.

Reason for rejection: Implementation with DPA parallel attributes has shown that it is too difficult for clients and servers to deal with parallel values. Its much better if the values in a dictionary value are all bound together. Also what if the number of values isn't the same?

8

