
IPP Server Contention Analysis
R. Turner

It seems to me that there is a very finite set of circumstances that can occur during the job submission
process from client to server. Note that these circumstances can be looked at from two perspectives; 1)
from a purely transport perspective, and 2) from an end-user perspective. In my opinion, we need to define
the transport problem first. After which, client software is free to translate certain transport encounters to a
suitable user experience as would be expected from a particular platform environment.

Client/Server Transport Issues

It seems to me that there are only four possible scenarios for print job submission transport:

1. The entire job is transmitted by the client and received successfully by the server
2. The print job has begun submission but an indefinite delay has been encountered; note that

this could occur after only one byte of the job has been successfully acknowledged, or the
entire job except for the last byte has been successfully acknowledged, or anywhere in
between.

3. The print job has begun submission but is abnormally terminated before all of the print job is
submitted.

4. The server is not accepting connections

I think all of the print job submission conditions that could occur would be mapped into one of the above
scenarios. Note that there are numerous reasons that might cause a client-server print job submission to fall
into one of the above scenarios, but for the purposes of transport issues, we will postpone discussion of
actual status codes.

With regards to actual server contention, scenarios 2,3 and 4 might be labeled as contention-related
scenarios.

IPP Transport

With IPP, it is easy to confuse HTTP transport issues with underlying TCP transport issues. Given the wild
variations in which IPP servers can be deployed, its easy to come with several combinations of IPP server
configurations. This document assumes that IPP client implementations will always be dedicated IPP
clients that employ both HTTP and IPP protocols in a monolithic fashion. I have outlined a number of
possible configurations that I think will make up the majority of IPP servers that are deployed:

1. Monolithic (dedicated) HTTP/IPP server.
2. Generic HTTP server, with traditional CGI-based IPP server
3. Netscape HTTP server with NSAPI-based IPP server
4. Microsoft IIS HTTP server with ISAPI-based IPP server
5. JVM-capable HTTP server with Java-servlet IPP server

The above configurations include multiple methods for determining the status of a particular IPP client-
server connection. Within the context of this document, I am assuming that the IPP working group can only
“standardize” end-to-end issues relating to status. This assumption implies ignoring transport-specific
status (TCP/IP, HTTP) and concentrating on IPP-specific status codes that can be encapsulated by the IPP
protocol. If we can rely on our transport to always deliver IPP responses reliably, then for the purposes of
contention handling, I think that transport-specific issues should be left up to individual implementations.
Especially in light of the numerous configurations that would have to be dealt with (see above), not to
mention the existence of HTTP proxies or other IPP gateways.

Contention Handling for IPP

To allow clients to predictably handle possible IPP server contention, we need to define a set of conditions
and/or status codes within the IPP protocol. We also need to define predictable semantics that IPP clients
should follow when these status codes are received in response to a job submission request. One or more
status code semantics could be applied to other IPP operations as well, in addition to job submission
operations.

For each of the operational scenarios that could result from contention (2 through 4) outlined at the
beginning of this document, I will attempt to address what type of client-server semantic might be enforced
for each one.

Scenario 2: Indefinite Delay during print job submission

In this scenario, a classical “spooling” server could be spooling the job to secondary storage as the job is
being received. It is possible that multiple threads of execution within the server are concurrently spooling
other client-initiated job submission streams to secondary storage. It is also possible that available
secondary storage is temporarily exhausted. It is reasonable to expect that client software (as opposed to the
actual client user) would sense this condition if for some reason attempts to send further job data were to
“block” for an unusual period of time. With a high-volume IPP server, this type of scenario would not be
exceptional, and would therefore be a normal circumstance of job submission to this particular server. The
term “block” in this paragraph could be used to connote any of the following cases:

1. An IPP request has been successfully transmitted, but no response has been returned, so the
overall “IPP transaction” is not complete.

2. An IPP request has been successfully transmitted, but the server response indicates that some
resource has become temporarily unavailable to complete the request.

3. The underlying transport on which we are relying for delivering IPP protocol is temporarily
“blocked” due to internal protocol semantics (“flow control”, “buffer availability”, etc.).

For the purposes of “standardizing” IPP behavior, I think the IPP working group should recognize this
scenario and define a particular type of response code that reflects this particular condition. This status code
would reflect case #2 above. Case #1 would not require protocol support, but rather client-side
configuration of timeout values. Case #3 involves underlying transport issues, which, due to the number of
APIs in use, is outside the domain of IPP standardization.

Scenario 3: Abnormal Termination of Job Submission

Usually, this scenario would be a degenerate case of scenario 2, wherein either the client or the server
would fail due to some timeout condition or other policy. This “policy” might indicate or enforce how long
either the client or server would wait for resources to become available to complete the job submission
request. In the client case a timeout would typically be used; if the server decides to abnormally terminate
job submission it might be due to the fact that the server has determined that one or more resources
required to complete job submission have entered into an “offline” state. At this point, the server decides it
cannot maintain client sessions that require one or more of the resources that have entered the “offline”
state.

From an IPP clients’ perspective, abnormal termination can take on the following forms:

1. Some type of “abort” indication is received from the underlying IPP transport.
2. The client receives a “abort” status code from the IPP server for a particular request

Within the scope of the IPP protocol, the working group can define a particular “abort” status code to
reflect abnormal termination of a job submission. Transport-level connection abort sequences are beyond
the scope for us to define since these status codes vary by transport API.

Scenario 4: No Job Submission Connections available

I believe this scenario to be the most common case that clients will handle with regards to server
contention. In my opinion, recognition of this scenario also implies that contention handling for non-
spooling, as well as spooling IPP servers will be the same. I define a non-spooling IPP server as a server
that can only accept one job submission request at a time. And further, that no other job submission
requests can be accepted until the “current” job completes. The non-spooling IPP server is just the
degenerate case of a spooling IPP server, when the spooling IPP server has exhausted available resources to
accept any new inbound job submissions.

As suggested by many participants on the DL, the WG should consider an appropriate status code, or set of
status codes to be returned by a server during periods of resource unavailability. In my opinion, only a
single status code would suffice, but we may want to consider a particular status code for each type of
“resource” that is unavailable. There is a fairly likely case wherein transport layer resources are unavailable
to complete a transport connection. In this event, the information available to clients as to what is actually
causing resource exhaustion will be vague.

Rationale for IPP-only Contention Handling

I have purposely avoided addressing any type of specific contention handling of conditions that occur
external to the “IPP domain”. By outside the “IPP domain”, I mean that I don’t think we should attempt to
“standardize” a contention solution that exposes any type of condition (potentially to the end user) that is
“below” the IPP application protocol. This means specific HTTP or TCP/IP conditions that occur. Due to
the differences in TCP/IP application programmer interfaces, and the differing types of HTTP interfaces
that IPP might use (see environments 1 through 5 above), I think its difficult to come up with a concise,
consistent behavior to document.

In my opinion, we should allow individual implementations to translate transport-level (HTTP, TCP/IP)
conditions to the most informative indication to potential end-users. These transport-level contention
conditions are few, and are not IPP-specific, and can occur in any applications that attempt to use the same
transport mechanisms, so ambiguity is almost certain in some transport-level contention scenarios.

However, since the status codes and indications that we define for IPP are application-specific and connote
more meaningful information related to the “printing” application, we should attempt to limit our scope to
defining IPP-specific features for contention handling. We can also amortize this effort over all potential
future mappings of IPP to other transports without having to re-address the problem.

Some of the potential “ratholes” that I would like to avoid are:
- Translation of NSAPI-based return codes to something usable by IPP
- Translation of ISAPI-based return codes to something usable by IPP
- Isolating System-V Transport Layer Interface (TLI) status codes for translation to something

usable by IPP
- Translating BSD “errno” or Winsock “WSAGetLastError” status codes to something usable

by IPP

- Any Java servlet-dependent status conditions
- Generic HTTP error code translation to something usable by IPP, especially in the presence of

one or more intermediate proxies.

