Study of the Print Channel
Monitor Interface

Kentaro IDE
<ide.kentaro@exc.epson.co.jp>
OpenPrinting WG Japan/Asia
Seiko Epson Corp.

15-17 November 2004

Agenda

& Print Channel Monitor
@ Background

@ Requirement
2 APIs

Print Channel Manager

Background

& PCM will wrap the difference of physical
layer and Vender depended protocol

@ Upper layer do not need to care about the
difference of physical layer like USB, Parallel,
Ethernet.

@ Wrap the difference of transaction protocol
used by printer venders.
- Port control between status port and data port

have deep dependency with Vender specific#®
protocol

Background

Application P ITAPI

Discovery
UPDF -
PPD 1l 14
FSG Device Bg) } Comand‘Control
—*| Print manager < pata
Call Bach’s
‘ SpOOIeI External orﬁignal
Print ;
data Renderer
I iy| Transform
' i
| Printer SM e l’* . —
| PP Driver |« = Capability
|
|
|

L o o oo oo o o e e o e Printer Some case in

Requirement

% PCM present port management functions

Writing Reading Status Reading Status
Printing Data for User “A” for User “B”
4 3
PCM
Reading / Writing
Dataflow Control

control

Printer

- Read/Write dataflow control
- Port arbitration with plural port
- Device arbitration

with plural device

Requirement

PCM present port management functions
@ Printer selection
@ Port open/close by SM, Driver and extra
@ Data read/write by Driver
@ Status read by SM
@ Job control from upper module
@ Extra control port

Requirement - PCM working flow

Print Manager

[A J
Si]ﬁ[iver
1Lz I

[PCMAPI | ﬂ/D One Module

b

[Plug-in Interface }
ﬁ ——/ __— Plug-in interface ???

[Plug-in } & -
(1 ._-
| e
%] = —
Printe Read/Write data via ,, ¥
Device/Pipe/socket... interface >~ -7
I : -
-

Requirement - PCM working flow

Print Manager J 1. Print Manager select Printer
] [/\] [2. PCM fork itself as
“‘Reading / Writing Control Process”
[SM } [Driver } with linking a Plug-in
7~ 7~ 3. SM or Driver Read/Write via PCMAPI
\ / |
\/
[PCMAPI }

[Plug-in Interface }
i = =

[Plug-in }
1C

-

APls

Object control

* New
* Create object for port management
» One object will connect one device (in many case, printer)
« PCM fork itself and link Plug-in

* Destroy
» Destroy object

Port control

* Open
» Open port for status, data or extra...
A kind of port specified by port ID

* Close
* Close port specified by port ID

APls

Job control
« StartJob
 Declare the beginning of the printing job

« EndJob
 Declare the end of the printing job

» CancelJob
« Cancel the job specified by job ID

Data R/W

* Read
» Read the specified byte length of a device
* A kind of data specified by port ID

» Write
 Write the specified byte length of a device
* A kind of data specified by port ID

Open questions

& PCM Interface must be...
o |IPP?
& Socket?
@ Named PIPE?
@ Or, anything else?

PCM is specification for OpenPrinting,
but want to grow as standard that
retrieve by other framework, isn't it?

r Ty = . by r"'h;_
m .-:.:‘__J.- ;r..

