
WS-Topics 1

Web Services Topics
(WS-Topics)
Version 1.0

3/5/2004

Authors

Steve Graham, IBM (editor)

Peter Niblett, IBM (editor)

Dave Chappell, Sonic Software

Amy Lewis, TIBCO Software

Nataraj Nagaratnam, IBM

Jay Parikh, Akamai Technologies

Sanjay Patil, SAP AG

Shivajee Samdarshi, TIBCO Software

Igor Sedukhin, Computer Associates International

David Snelling, Fujitsu Laboratories of Europe

Steve Tuecke, Globus / Argonne National Laboratory

William Vambenepe, Hewlett-Packard

Bill Weihl, Akamai Technologies

Copyright Notice

© Copyright Akamai Technologies, Computer Associates International, Inc., Fujitsu
Limited, Hewlett-Packard Development Company, International Business Machines
Corporation, SAP AG, Sonic Software Corporation, The University of Chicago and
Tibco Software Inc. 2003, 2004. All rights reserved.

Permission to copy and display this “Web Services Topics” Specification (“this
Specification”), in any medium without fee or royalty is hereby granted, provided
that you include the following on ALL copies of this Specification, or portions thereof,
that you make:

1. A link or URL to this Specification at this location.

2. This Copyright Notice as shown in this Specification.

THIS SPECIFICATION IS PROVIDED "AS IS". AKAMAI TECHNOLOGIES, COMPUTER
ASSOCIATES INTERNATIONAL, INC, FUJITSU LIMITED, HEWLETT-PACKARD
DEVELOPMENT COMPANY, IBM, SAP AG, SONIC SOFTWARE, THE UNIVERSITY OF
CHICAGO AND TIBCO SOFTWARE (COLLECTIVELY, THE “COMPANIES”) MAKE NO
REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT THE CONTENTS OF THIS
SPECIFICATION ARE SUITABLE FOR ANY PURPOSE; NOR THAT THE

WS-Topics 2

IMPLEMENTATION OF SUCH CONTENTS WILL NOT INFRINGE ANY THIRD PARTY
PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

THE COMPANIES WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL,
INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF OR RELATING TO ANY
USE OR DISTRIBUTION OF THIS SPECIFICATION.

The companies each agree to grant you a royalty-free license, under commercially
reasonable terms and conditions, to their respective patents that they deem
necessary to implement this Specification.

The names and trademarks of the Companies may NOT be used in any manner,
including advertising or publicity pertaining to the Specification or its contents
without specific, written prior permission. Title to copyright in this Specification will
at all times remain with the Companies.

No other rights are granted by implication, estoppel or otherwise.

PORTIONS OF THIS MATERIAL WERE PREPARED AS AN ACCOUNT OF WORK
SPONSORED BY IBM CORPORATION AT UNIVERSITY OF CHICAGO'S ARGONNE
NATIONAL LABORATORY. NEITHER THE AUTHORS, NOR THE UNITED STATES
GOVERNMENT OR ANY AGENCY THEREOF, NOR THE UNIVERSITY OF CHICAGO, NOR
IBM, NOR ANY OF THEIR EMPLOYEES OR OFFICERS, NOR ANY OTHER COPYRIGHT
HOLDERS OR CONTRIBUTORS, MAKES ANY WARRANTY, EXPRESS OR IMPLIED, OR
ASSUMES ANY LEGAL LIABILITY OR RESPONSIBILITY FOR THE ACCURACY,
COMPLETENESS, OR USEFULNESS OF ANY INFORMATION, APPARATUS, PRODUCT,
OR PROCESS DISCLOSED, OR REPRESENTS THAT ITS USE WOULD NOT INFRINGE
PRIVATELY OWNED RIGHTS. REFERENCE HEREIN TO ANY SPECIFIC COMMERCIAL
PRODUCT, PROCESS, OR SERVICE BY TRADE NAME, TRADEMARK, MANUFACTURER,
OR OTHERWISE, DOES NOT NECESSARILY CONSTITUTE OR IMPLY ITS
ENDORSEMENT, RECOMMENDATION, OR FAVORING BY IBM, THE UNITED STATES
GOVERNMENT OR ANY AGENCY THEREOF OR ANY OTHER COPYRIGHT HOLDERS OR
CONTRIBUTORS. THE VIEW AND OPINIONS OF AUTHORS EXPRESSED HEREIN DO
NOT NECESSARILY STATE OR REFLECT THOSE OF IBM, THE UNITED STATES
GOVERNMENT OR ANY AGENCY THEREOF, OR THE ENTITY BY WHICH AN AUTHOR
MAY BE EMPLOYED.

This manuscript has been created in part by the University of Chicago as Operator of
Argonne National Laboratory ("Argonne") under Contract No. W-31-109-ENG-38 with
the U.S. Department of Energy. The U.S. Government retains for itself, and others
acting on its behalf, a paid-up, nonexclusive, irrevocable worldwide license in said
article to reproduce, prepare derivative works, distribute copies to the public, and
perform publicly and display publicly, by or on behalf of the Government.

WS-Topics 3

Abstract
The Event-driven, or Notification-based, interaction pattern is a commonly used
pattern for inter-object communications. Examples exist in many domains, for
example in publish/subscribe systems provided by Message Oriented Middleware
vendors, or in system and device management domains. This notification pattern is
increasingly being used in a Web services context.

WS-Notification is a family of related white papers and specifications that define a
standard Web services approach to notification using a topic-based publish/subscribe
pattern. It includes: standard message exchanges to be implemented by service
providers that wish to participate in Notifications, standard message exchanges for a
notification broker service provider (allowing publication of messages from entities
that are not themselves service providers), operational requirements expected of
service providers and requestors that participate in notifications, and an XML model
that describes topics. The WS-Notification family of documents includes: a white
paper: Publish-Subscribe Notification for Web services as well as three normative
specifications: WS-BaseNotification, WS-BrokeredNotification, and WS-Topics.

This document defines a mechanism to organize and categorize items of interest for
subscription known as “topics”. These are used in conjunction with the notification
mechanisms defined in WS-Base Notification. WS-Topics defines three topic
expression dialects that can be used as subscription expressions in subscribe request
messages and other parts of the WS-Notification system. It further specifies an XML
model for describing metadata associated with topics. This specification should be
read in conjunction with the WS-Base Notification specification and the Publish-
Subscribe Notification for Web Services document.

Status
This WS-Notification specification is an initial draft release and is provided for review
and evaluation only. The Companies hope to solicit your contributions and
suggestions in the near future. The Companies make no warranties or
representations regarding the specification in any manner whatsoever.

WS-Topics 4

Table of Contents
1 INTRODUCTION .. 4

1.1 NOTATIONAL CONVENTIONS... 5
1.2 NAMESPACES .. 5

2 TERMINOLOGY AND CONCEPTS... 5
3 TOPICS AND TOPIC SPACES.. 5
4 EXAMPLE.. 7
5 MODELING TOPIC SPACES IN XML.. 8
6 MODELING TOPICS IN XML.. 8
7 TOPIC EXPRESSIONS... 11

7.1 SIMPLETOPIC EXPRESSIONS .. 11
7.2 CONCRETETOPICPATH EXPRESSIONS .. 12
7.3 FULLTOPICPATH EXPRESSIONS... 13

7.3.1 Validating FullTopicExpressions ... 14
8 ALIASREFS AND THEIR RESOLUTION... 15
9 GROWING A TOPIC TREE .. 16
10 THE “AD-HOC” TOPIC SPACE... 17
11 NOTIFICATIONPRODUCER AND TOPICS .. 17
12 SECURITY CONSIDERATIONS .. 18
13 ACKNOWLEDGEMENTS ... 18
14 REFERENCES ... 18
APPENDIX I – XML SCHEMA ... 19

1 Introduction
The Event-driven, or Notification-based, interaction pattern is a commonly used
pattern for inter-object communications. Examples exist in many domains, for
example in publish/subscribe systems provided by Message Oriented Middleware
vendors, or in system and device management domains.

This document defines a mechanism to organize and categorize items of interest for
subscription known as “topics”. These are used in conjunction with the notification
mechanisms defined in WS-Base Notification.

WS-Topics defines three topic expression dialects that can be used as subscription
expressions in subscribe request messages and other parts of the WS-Notification
system. It further specifies an XML model for describing metadata associated with
topics. This specification should be read in conjunction with the WS-Base Notification
specification and the Publish-Subscribe Notification for Web Services white paper.

WS-Topics 5

1.1 Notational Conventions
The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119.

When describing abstract data models, this specification uses the notational
convention used by the [XML Infoset]. Specifically, abstract property names always
appear in square brackets (e.g., [some property]).

When describing concrete XML schemas, this specification uses the notational
convention of [WS-Security]. Specifically, each member of an element’s [children] or
[attributes] property is described using an XPath-like notation (e.g.,
/x:MyHeader/x:SomeProperty/@value1). The use of {any} indicates the presence of
an element wildcard (<xsd:any/>). The use of @{any} indicates the presence of an
attribute wildcard (<xsd:anyAttribute/>).

1.2 Namespaces
The following namespaces are used in this document:

Prefix Namespace

s12 http://www.w3.org/2003/05/soap-envelope

xsd http://www.w3.org/2001/XMLSchema

wsp http://schemas.xmlsoap.org/ws/2002/12/policy

wsa http://schemas.xmlsoap.org/ws/2003/02/addressing

wsnt http://www.ibm.com/xmlns/stdwip/web-services/WS-BaseNotification

wsrl http://www.ibm.com/xmlns/stdwip/web-services/WS-ResourceLifetime

wsrp http://www.ibm.com/xmlns/stdwip/web-services/WS-ResourceProperties

wstop http://www.ibm.com/xmlns/stdwip/web-services/WS-Topics

2 Terminology and Concepts
Please refer to [WS-Notification Whitepaper] for a list of terms and their definitions.

3 Topics and Topic Spaces
A collection of related Topics is used to organize and categorize a set of notification
messages. It provides a convenient means by which subscribers can reason about
notifications of interest. Topics appear in several places within the WS-Notification
system. As part of the publication of a NotificationMessage, the Publisher associates
it with one or more Topics. When a Subscriber creates a Subscription, it associates
the Subscription with one or more Topics. The NotificationProducer uses these Topic

WS-Topics 6

lists as part of the matching process: a NotificationMessage is delivered to a
NotificationConsumer if the list of Topics associated with the Subscription has a non-
empty intersection with the list of Topics associated with the NotificationMessage.

In order to avoid naming collisions, and to facilitate interoperation between
independently developed NotificationProducers and Subscribers, every WS-
Notification Topic is assigned to an XML Namespace. The set of Topics associated
with a given XML Namespace is termed a Topic Space. Any XML namespace has the
potential to scope a single collection of Topics. Of course, not every XML namespace
will define a Topic Space.

It is important to understand the distinction between a Topic Space and the set of
Topics (the “Topic Set”) supported by a NotificationProducer. A Topic Space is just an
abstract set of Topic definitions. While it is certainly possible for a given Topic Space
to be used by exactly one Notification Producer, there is no expectation that this will
be the case. Topics from a single Topic Space may be referenced in the Topic Sets of
many different NotificationProducers. Moreover the Topic Set of a
NotificationProducer MAY contain Topics from several different Topic Spaces. This
concept is expanded upon in section 11.

Each Topic can have zero or more child topics and a child topic can itself contain
further child topics. A Topic without a parent is termed a root topic. A particular root
topic and all its descendents form a hierarchy (termed a Topic Tree).

The rationale for hierarchical topic structures is:

o They allow Subscribers to subscribe against multiple Topics. For example a
Subscriber can subscribe against an entire Topic Tree, or a subset of the
Topics in a Topic Tree. This reduces the number of subscription requests that
a Subscriber needs to issue if it is interested in a large sub-tree. It also
means that a Subscriber can receive NotificationMessages related to
descendent topics without having to be specifically aware of their existence.

o They provide a convenient way to manage large Topic Spaces (for example
when administering security policies).

Note: Although WS-Notification permits hierarchical topic structures, there is no
requirement or expectation that all Topic Spaces will contain them. It is perfectly
possible for a Topic Space to contain only root topics (possibly only a single root
topic). A NotificationProducer is not required to support structured topics. It may
restrict its Topic Set to include only topics from Topic Spaces that contain only root
Topics; even if it does include topics from a Topic Space that contains topic
hierarchies, it may choose only to support root topics from that Topic Space.

A Topic Space is thus a collection (forest) of Topic Trees. The Topic Space contains
additional metadata relating to its member Topics. The metadata describing a
particular Topic Space can be modeled as an XML document (see section 5).

Each Topic has a local name, an NCName. All root topics must have unique names
within their Topic Space. In this way, a root Topic can be uniquely referenced by a
QName formed by combining the XML Namespace associated with the Topic Space
and the local name of the root topic. Child topics can only be referred to relative to
their ancestor root topic’s QName using a path-based TopicExpression dialect (see
section 7).

WS-Topics 7

No Topic can contain two immediate child topics with the same name, however
Topics with the same name can appear elsewhere in a Topic Tree, and no
relationship is implied. Similarly two separate Topic Trees in the same Topic Space
may contain descendent Topics with the same name; these are not necessarily
related to each other in any way either.

4 Example
Consider a Topic Space that can be depicted as follows. The Topic Space is contained
in the "http://example.org/topicSpace/example1" namespace. This Topic Space has
two root Topics, named t1 and t4. Topic t1 has two child topics, t2 and t3. Topic t4
has two child topics, t5 and t6. Topic t6 is an alias for t1’s child topic t3.

This topic space and its metadata can be described using the following XML instance
document:
<?xml version="1.0" encoding="UTF-8"?>
<wstop:topicSpace name="TopicSpaceExample1"
 targetNamespace="http://example.org/topicSpace/example1"
 xmlns:tns="http://example.org/topicSpace/example1"
 xmlns:xyz="http://example.org/anotherNamespace"
 xmlns:wstop=
 "http://www.ibm.com/xmlns/stdwip/web-services/WS-Topics" >
 <wstop:topic name="t1">
 <wstop:topic name="t2" messageTypes="xyz:m1 tns:m2"/>
 <wstop:topic name="t3" messageTypes="xyz:m3"/>
 </wstop:topic>
 <wstop:topic name="t4">
 <wstop:topic name="t5" messageTypes="tns:m3"/>
 <wstop:topic name="t6">
 <wstop:AliasRef
 dialect="http://www.ibm.com/xmlns/stdwip/web-services/WS-
Topics/TopicExpression/concreteTopicPath" >
 tns:t1/t3
 </wstop:AliasRef>
 </wstop:topic>

tns:T1

T2 T3

tns:T4

T5 T6

is alias for

Topic Space:
“http://example.org/topicSpace/example1”

WS-Topics 8

 </wstop:topic>
</wstop:topicSpace>

We describe the details behind modeling topic spaces and topics in the following
sections.

5 Modeling Topic Spaces in XML
The WS-Topics XML Schema contains element and type definitions used to create
topic space instance documents. An instance document is associated with a single
Topic Space and contains the names of Topics in that Topic Space along with their
metadata. It may include all the topics in that topic space, or just a subset of them.
The following is a non-normative description of a TopicSpace element:

...

<TopicSpace name=NCName? targetNamespace=anyURI …>

 <Topic … />*

…

</TopicSpace>

A TopicSpace element is further constrained in the following way:

/wstop:TopicSpace

The top-level element in a topic space instance document. It contains Topic
declaration elements and associates them with the XML Namespace for the
topic space

/wstop:TopicSpace/@name

An optional name that can be assigned to the TopicSpace element for light-
weight documentation purposes.

/wstop:TopicSpace/@targetNameSpace

The XML Namespace for this topic space. It is expressed as a URI. This forms
the namespace component of the QName of each root Topic in the Topic
Space.

/wstop:topicSpace/Topic

The TopicSpace has a collection of zero or more child Topic elements that
define the roots of the Topic Trees within the Topic Space. The TopicSpace
element may contain any number of Topic elements. The value of
/Topic/@name MUST be unique amongst all root Topics defined in the
TopicSpace.

/wstop:TopicSpace/{any}

This is an extensibility mechanism to allow additional elements to be
specified.

/wstop:TopicSpace/@{any}

This is an extensibility mechanism to allow additional attributes to be
specified.

6 Modeling Topics in XML
WS-Notification defines an XML representation of a Topic that can be represented in
the following non-normative fashion::

WS-Topics 9

<TopicSpace name=… targetNamespace=…>

 <Topic name=NCName messageTypes=list of QName? final=boolean?>

 (

 <AliasRef>wsnt:TopicExpression</AliasRef>

 |

 <MessagePattern>wsrp:QueryExpression</MessagePattern>?

 <Topic … />*

…

)

 </Topic>

</TopicSpace>

A Topic element is further constrained in the following way:

/wstop:Topic

This describes the definition of a Topic. Its contents MUST be either a single
/AliasRef child element or an optional /MessagePattern child element followed
by zero or more child Topic elements.

/wstop:Topic/@namespace

The namespace of a Topic is defined as the targetNamespace of the
TopicSpace element ancestor of the Topic. As we saw in section 5, individual
root topics are modeled by defining Topic child elements of the TopicSpace
element.

/wstop:Topic/@name

The NCName of this topic. This attribute is required. These NCNames must all
be unique with respect to the parent element (TopicSpace or Topic) that
contains this Topic. In the case of a root Topic, the @namespace and @name
attributes combine to form the QName of the root Topic.

/wstop:Topic/@messageTypes

An optional list of the QNames of XML elements that define the types of
NotificationMessage that may be used with the Topic. A Publisher using a
given Topic MUST NOT generate a NotificationMessage whose type is not
included in this list, although the special value xsd:any indicates that any
NotificatonMessage type MAY be used. A given QName MAY appear multiple
times in the list; second or subsequent appearance of a given QName are not
meaningful and MAY BE ignored. If this list is empty, or the attribute not
defined, the default value of “xsd:any” is assumed.

/wstop:Topic/@final

An optional attribute whose value is of type xsd:boolean. The default value is
“false”. If the value is “true” it indicates that the NotificationProducer cannot
dynamically add child Topics to this Topic. This means that it is an error if a
Publisher or Subscriber attempts to use a TopicExpression that references
child Topics of a Topic that is marked as @final=”true” – other than child
Topics that are explicitly included in the definition of the Topic.

WS-Topics 10

/wstop:Topic/AliasRef

This element indicates that the Topic definition is an alias for another Topic
(or set of Topics). This mechanism can be used to permit alternative spellings
of a given Topic name, or to allow a Topic (sub)tree from one Topic Space to
be imported into a Topic definition in another Topic Space. The contents of an
AliasRef element is a TopicExpression that may resolve to multiple Topics,
including further aliases (even possibly itself). Publishing or subscribing using
a Topic which is an alias is equivalent to publishing or subscribing to all the
non-alias Topics which result from the process of alias resolution. This process
is described in greater detail in the next section. A Topic containing an
AliasRef child element MAY contain @messageTypes, or @final– however if it
does their values SHOULD be ignored. The algorithm for resolving AliasRef
elements is described in section 8.

/wstop:Topic/AliasRef/@dialect

A URI that identifies the TopicExpression dialects used in the AliasRef
component. This document defines the URIs for three TopicExpression
languages. The designer MAY choose from these URIs or use a URI associated
with a TopicExpression dialect defined elsewhere.

/wstop:Topic/MessagePattern

An optional QueryExpression as defined by WS-ResourceProperties. This
QueryExpression is used to describe the pattern of the message that will
appear on the Topic. Conceptually, the MessagePattern component can be
thought of as the object of an boolean() expression, evaluated against a
NotificationMessage. This boolean() expression, with the value of
MessagePattern as parameter, is guaranteed to evaluate to “true” when
evaluated in the context of any NotificationMessage that is associated with
the Topic. The MessagePattern component constrains the
NotificationMessages that can be used with the Topic. It is additional to the
constraint contained in @messageTypes, and provides a further refinement to
that constraint.

/wstop:Topic/MessagePattern/@dialect

A URI that identifies the language of the QueryExpression. WS-
ResourceProperties defines standard URIs for XPath 1.0 and XPath 2.0
languages. Designers MAY define and use other domain-specific URIs to
identify the dialect of the QueryExpression.

/wstop:Topic/Topic

Declares a child Topic. A Topic may contain any number of child Topic
elements; however the value of the @name attribute of a child Topic must be
unique amongst all the child Topics of its immediate parent.

/wstop:Topic/{any}

This is an extensibility mechanism to allow additional elements to be
specified.

/wstop:Topic/@{any}

This is an extensibility mechanism to allow additional attributes to be
specified.

WS-Topics 11

7 Topic Expressions
Topics are referred to by TopicExpressions. There are several places in WS-
Notification where these expressions are used:

1. As a component of the Subscribe message request to a NotificationProducer;

2. As a component of the Notify message to a NotificationConsumer or
NotificationBroker;

3. In the Topics Resource Property element(s) associated with the
NotificationProducer role

4. In the aliasRef attribute of a Topic element.

A non-normative syntax for a TopicExpression is shown below:
<wsnt:TopicExpression dialect=anyURI?>
 dialect-specific expression
…
</wsnt:TopicExpression>

A topic expression has two components:

/wsnt:TopicExpression/@dialect

The dialect component contains a URI which identifies the type of grammar
used in the TopicExpression. This URI may be one from the set defined in this
document, or may be a URI defined elsewhere.

/wsnt:TopicExpression/{any}

The content of the TopicExpression is an expression in the grammar defined
by the expression language identified by the @dialect component.

The purpose of a TopicExpression is to identify a relevant set of Topics from one or
more Topic Spaces.

7.1 SimpleTopic Expressions
This specification defines a simple TopicExpression dialect with the following URI:
http://www.ibm.com/xmlns/stdwip/web-services/WS-
Topics/TopicExpression/simple

This dialect is defined to standardize a very simple Topic Expression language for use
by resource constrained entities in the WS-Notification system that deal only with
simple Topic Spaces.

A TopicExpression in this dialect is a token (as defined by XML Schema) with an
additional constraint on its format. The constraint is the token must contain a
TopicExpression. The grammar is defined using the simple Extended Backus Naur
Form (EBNF) also used in [XML]:

[1] TopicExpression ::= RootTopic
[2] RootTopic ::= QName

[vc: If a namespace is included in the RootTopic, it must correspond to a
valid Topic Space definition and the local name must correspond to the name
of a root topic defined in that namespace.]

Because the only valid TopicExpression in this dialect is a QName, only root topics
can be addressed by this grammar. For those entities that support only this dialect of
TopicExpression, only simple topic spaces, those that define only root topics,
SHOULD be used.

WS-Topics 12

An example TopicExpression within this dialect is shown below:
…
 xmlns:tns=…

<wsnt:TopicExpression
 dialect="http://www.ibm.com/xmlns/stdwip/web-services/WS-
Topics/TopicExpression/simple">
 tns:t1
</wsnt:TopicExpression>

This TopicExpression identifies the root Topic t1 within the Topic Space
corresponding to the namespace prefix tns.

7.2 ConcreteTopicPath Expressions
This specification defines a simple path-based TopicExpression dialect with the
following URI:
http://www.ibm.com/xmlns/stdwip/web-services/WS-
Topics/TopicExpression/concreteTopicPath

The ConcreteTopicPath expression is used to identify a single Topic within a Topic
Space, using a path notation.

A TopicExpression in this dialect is a token (as defined by XML Schema) with an
additional constraint on its format. The constraint is the token must contain a
TopicExpression. The grammar is defined using the simple Extended Backus Naur
Form (EBNF) also used in [XML]:

[1] TopicExpression ::= TopicPath
[2] TopicPath ::= RootTopic ChildTopicExpression*
[3] RootTopic ::= QName

[vc: If a namespace is included in the RootTopic, it must correspond to a
valid Topic Space Document and the local name must correspond to the name
of a root topic defined in that namespace.]

[4] ChildTopicExpression ::= ‘/’ ChildTopicName
[5] ChildTopicName ::= NCName

[vc: The NCName must correspond to the name of a topic within the
descendant path from the RootTopic, where each forward slash denotes
another level of child topic elements in the path.]

Note: White space is not permitted within a ConcreteTopicPath expression.

An example TopicExpression within this dialect is shown below:
…
 xmlns:tns=…

<wsnt:TopicExpression
 dialect="http://www.ibm.com/xmlns/stdwip/web-services/WS-
Topics/TopicExpression/concreteTopicPath">
 tns:t1/t3
</wsnt:TopicExpression>

The TopicPath expression identifies the Topic named “t3”, child of Topic tns:t1.

As with XPath, this TopicPath expression syntax uses the slash (“/”) to describe child
of.

Note: The simple Topic Expression dialect defined in the previous section is a subset
of the ConcreteTopicPath Expression dialect.

WS-Topics 13

7.3 FullTopicPath Expressions
This specification defines a fully featured path-based TopicExpression dialect with the
following URI:
http://www.ibm.com/xmlns/stdwip/web-services/WS-
Topics/TopicExpression/FullTopicPath

FullTopicPath expressions consist are made up of XPath [XPath] relative location path
expressions with optional Namespace prefixes. The XPath expression is evaluated
over a document whose nodes are made up of the topics in the topic space, and
where topics include their child topics as contained XML elements (note that this
document is not the same as the topic space document described earlier, but can be
derived from it). The document root element is not itself a topic, so that root topics
in the topic space appear as first-level children of the document root. The
TopicExpression selects the set of topics that correspond to the node-set that results
from evalutaing the location path contained in the TopicExpression, using standard
XPath. The initial context node for this evaluation is the document root element.

The FullTopicPath dialect does not permit the use of the entire XPath language. This
specification provides syntactic constraints on the contents of the
FullTopicPathExpression, that limits the constructs that can be used

A TopicExpression in this dialect is a token (as defined by XML Schema) with an
additional constraint on its format. The constraint is the token must conform to
production rule [1] in the following grammar. This grammar is defined using the
simple Extended Backus Naur Form (EBNF) also used in [XML]:

[1] TopicExpression ::= TopicPath | ConjoinedTopicExpression
[2] ConjoinedTopicExpression ::= TopicExpression Conjunction

 TopicExpression
[3] Conjunction ::= ‘|’
[4] TopicPath ::= RootTopic ChildTopicExpression*
[5] RootTopic ::= NamespacePrefix? ('//')? (NCName | ‘*’)

[vc: If a namespace is included in the RootTopic, it must correspond to a
valid Topic Space Document and the local name must correspond to the name
of a root topic defined in that namespace.]

[6] NamespacePrefix ::= NCName ‘:’
[7] ChildTopicExpression ::= ‘/’ ‘/’? (ChildTopicName | ‘*’ | ‘.’)
[8] ChildTopicName ::= NCName

[vc: The NCName must correspond to the name of a topic within the
descendant path from the RootTopic, where each forward slash denotes
another level of child topic elements in the path.]

In this grammar, each TopicPath [4] is to be interpreted as an XPath location path
evaluated over the document derived from the Topic Space designated by the
NamespacePrefix.

Note: White space is not permitted within a FullTopicPath expression.

Note: The ConcreteTopicPath dialect defined in the previous section is a subset of the
FullTopicPath Expression that contains no wildcards and no ‘|’ operators.

The dialect is further explained by the following examples (for the sake of brevity,
the examples show only the content of the TopicExpression element):

WS-Topics 14

The wildcard character * is used to identify a node-set consisting of a collection of
child Topics. For example
“tns:t1/*”

This TopicExpression identifies all the child Topics of the root Topic t1. Note that this
TopicExpression does not include the root Topic t1 itself, and it does not include any
grandchildren or further descendents of t1.

Wildcard characters may be interspersed with fixed child Topic names, to build up
longer paths, for example:
“tns:t1/*/t3”

This TopicExpression identifies all grandchildren of tns:t1 that have the name t3.

The wildcard * may also be used in place of a root topic name, for example:
“tns:*”

This TopicExpression identifies all root topics in the tns: Topic Space.

As in full XPATH the // separator is used to identify all descendents (subject of
course to the constraints implied by the remainder of the path), not just immediate
children.

If the TopicExpression ends with the characters “//.” this indicates that the
TopicExpression matches a Topic subtree. For example:
“tns:t1/t3//.”

This identifies the subtree consisting of tns:t1/t3 and all its descendents.

If the TopicExpression ends with the characters “//*” this indicates that the
TopicExpression matches all the descendents of a topic. For example:
“tns:t1/t3//*”

This identifies the subtree consisting of the descendents of tns:t1/t3 but, unlike the
previous example, does not include tns:t1/t3 itself.

To include all the topics in the entire Topic Space the following TopicExpression can
be used:
“tns://*”

The // separator can also be used in the middle of a TopicExpression, for example
“tns:t1//t3”

This TopicExpression identifies all descendents of tns:t1 that have the name t3.

A TopicExpression MAY contain two or more wildcards (both * and //).

TopicExpressions may be combined together with the conjunction operator as
follows:
 “tns:t1/t2 | tns:t4/t5”

A TopicExpression using | can include root Topics from different Topic Spaces. Note:
a TopicExpression containing a conjunction operator is equivalent to the set union of
the Topics described by combining the TopicExpression on either side of the
conjunction operator.

7.3.1 Validating FullTopicExpressions
If the NotificationProducer permits it, the FullTopicExpression dialect can be used as
the TopicExpression in the Subscribe message [WS-BaseNotification]. Such
TopicExpressions MAY refer to one or more topics which may or may not exist in the
Topic Space, or in the Topic Set supported by the NotificationProducer.

WS-Topics 15

The NotificationProducer MUST validate the TopicExpression as follows.

1. If the TopicExpression explicitly refers to a Topic that is not permitted by the
Topic Space, then the NotificationProducer MUST respond with a Fault. A
Topic is not permitted if it is a root topic, or a descendent of a root topic, that
is not defined in the Topic Space. A Topic is also not permitted if it, or any of
its ancestors, are not defined in the Topic Space and are the child of a Topic
that is defined with @final=’true’.

2. If the NotificationProducer has a fixed Topic Set, and the intersection of the
topics selected by the TopicExpression with this Topic Set is empty, then the
NotificationProducer MUST respond with a Fault.

Here are some examples to illustrate these rules:

Suppose that Topic Space tns1 contains root topics tns1:A (@final= “true’”) and
tns1:B (@final = “false”), and that NotificationProducer X has a fixed topic set
consisting just of tns1:B.

• Any subscribe with a TopicExpression containing tns1:D is rejected

• Any subscribe with a TopicExpression containing tns1:A/X is rejected

• A subscribe to tns1:B/X is rejected, but would be permitted if X did not have a
fixed topic set.

• A subscribe to tns1:A is rejected, but would be permitted if X did not have a fixed
topic set.

• A subscribe to tns1:* is permitted (and is equivalent in this case to a subscribe to
tns1:B)

• A subscribe to tns1://* is permitted (and is equivalent in this case to a subscribe
to tns1:B)

• A subscribe to tns1:A | tns1:B is permitted (and is equivalent in this case to a
subscribe to tns1:B)

8 AliasRefs and their resolution
The AliasRef is an optional child element of a Topic element that indicates that the
Topic is an alias for another Topic (or combination of topics). This mechanism can be
used to permit alternative spellings of a given Topic name, or to allow a Topic
(sub)tree from one TopicSpace to be imported into a Topic definition in another Topic
Space. In this example Topic t6 is defined as an alias for tns:t1/t3

 <wstop:topic name="t6">
 <wstop:AliasRef
 dialect="http://www.ibm.com/xmlns/stdwip/web-services/WS-
Topics/TopicExpression/concreteTopicPath" >
 tns:t1/t3
 </wstop:AliasRef>
 </wstop:topic>

An AliasRef MAY contain any TopicExpression, including those expressing wild cards
or ‘|’ operators. This means that an AliasRef might reference another AliasRef Topic

WS-Topics 16

definition, or might be a wild card expression that includes a mixture of alias and
non-alias definitions.

An AliasRef is resolved into a set of zero or more non-aliased Topics using the
following rules:

1. If the AliasRef is a concrete TopicPath expression that is not an alias, then the
alias resolves to the Topic identified by that concreteTopicPath expression.

2. If the AliasRef is a concreteTopicPath expression that is itself identifies an
alias, then resolution proceeds recursively from this alias.

3. If the AliasRef is a FullTopicPath expression with *, // but no ‘|’ operators,
then the alias resolves to this set of Topics (no deeper examination of aliases
is performed in this case).

4. If the AliasRef is a FullTopicPath expression containing ‘|’ operators, then
each component of the expression is treated separately and creates a new
resolution branch. Resolution proceeds on each branch individually, using
rules 1,2,3, the resolution of each branch is aggregated to the resolved Topic
set.

5. If a circular reference is encountered (AliasRef pointing directly or indirectly
back to itself) then the branch in question contributes nothing to the resolved
Topic set.

If a TopicExpression is supplied as a parameter on a message exchange defined by
any of the WS-Notification specifications, it is subjected to the alias resolution
process described above. The resulting resolved Topic set is then used in place of the
original parameter. If the resolved Topic set is empty, the operation MUST fail. If the
operation required a concrete topic and the resolved set contains multiple topics, or
contains wild card topic expressions, then the operation MUST fail.

9 Growing a Topic Tree
If a Topic in the TopicSpace is marked with the final attribute, with value=”true”,
then no further child Topics can be added dynamically to that Topic.

If a Topic is not marked with the final attribute with value=”true”, then a
NotificationProducer could potentially add further child Topics to that Topic, and
permit Subscriptions to such child Topics. This specification does not define the
circumstances under which this occurs, and it is up to the NotificationProducer to
determine if and when it permits additional children (it is not obligated to allow
children to be added just because a Topic may be marked with final=”false”).

When a NotificationProducer accepts Topics that are not previously defined in the
TopicSpace, it is not obliged to update any actual instance document that contains
the TopicSpace definition. Rather, the extension exists only for that
NotificationProducer and any Subscriber that interacts with it. Circumstances under
which a NotificationProducer MAY add new child Topics to a Topic include:

o a Subscriber attempting to subscribe to a TopicExpression that suggests a
new child Topic;

o a Publisher attempting to publish to a TopicExpression that suggests a new
child Topic;

o the NotificationProducer implementation encountering a new circumstance
that doesn’t fit well with any of the existing child Topics (for example a new

WS-Topics 17

company starts trading on a stock market, and a stock ticker service wishes
to include it);

o an administrator explicitly adding support for a new child Topic using some
administrative portType (not defined by any WS-Notification specification)
implemented by the NotificationProducer.

10 The “ad-hoc” Topic Space
Associating a TopicSpace with an XML namespace provides an unambiguous naming
scheme for Topics. This is important when two entities which have no prior
knowledge of each other attempt (for example a Subscriber which has just
discovered a NotificationBroker) to interact.

However there are circumstances where someone wishes to implement a Publisher
for which there is no suitable pre-existing TopicSpace – and where the implementer
does not wish to incur the overhead of creating a new TopicSpace (assigning a
unique namespace, and creating the TopicSpace element within some XML instance
document).

To help such users, WS-Notification defines a special built-in TopicSpace called the
ad-hoc TopicSpace.

The ad-hoc TopicSpace has no pre-defined root Topics, but allows new root Topics to
be added dynamically (in the same way that a non-final Topic allows new child
Topics to be added to it). Any Topic that is added dynamically to the ad-hoc
TopicSpace itself permits the addition of further child Topics, and allows any type of
NotificationMessage element to be associated with it. There is no concept of Topic
aliasing in the ad-hoc TopicSpace.

The ad-hoc TopicSpace is defined by the following namespace URI
(http://www.ibm.com/xmlns/stdwip/web-services/WS-Topics/adHoc) and is accessed
using TopicExpressions that reference this namespace.

A NotificationProducer or Subscriber can use this TopicSpace to define ad-hoc Topics
dynamically, without having to associate them with their own TopicSpace. Caution
should be used when employing ad-hoc Topics, as there is no way for a
NotificationConsumer to distinguish between it and other similarly-named ad-hoc
Topics supported by any number of NotificationProducers.

11 NotificationProducer and Topics
A NotificationProducer uses Topics to group NotificationMessages related to some
Situation. A NotificationProducer can support one or more Topics, from multiple Topic
Spaces. A NotificationProducer can support an entire Topic Tree, or just a subset of
the Topics in that Topic Tree. The set of Topics currently supported by a
NotificationProducer can be determined by accessing the Topics Resource Property
element (see [WS-BaseNotification]). This Resource Property contains the set of
Topics that the NotificationProducer expects to handle.

The list of Topics supported by the NotificationProducer MAY change over time.
Reasons for the set of Topics changing include:

o The NotificationProducer supporting additional Topics from a TopicSpace that
is already partially supported;

WS-Topics 18

o The NotificationProducer supporting additional Topics from a TopicSpace not
previously supported;

o The NotificationProducer supporting extension Topics to a (new or already
supported) TopicSpace, as discussed in the previous section;

o The NotificationProducer ceasing to support Topics previously listed.

This specification does not require a NotificationProducer to support any or all of the
types of changes just listed, and does not dictate the set of conditions under which
the list of supported Topics will change.

12 Security Considerations
A non-normative discussion of the security scenarios and considerations associated
with the entire family of WS-Notification specifications is contained in [WS-
Notification Whitepaper].

13 Acknowledgements
This specification has been developed as a result of joint work with many individuals
and teams. The authors wish to acknowledge the contributions from many people,
including:

Tim Banks (IBM), Nick Butler (IBM), Glen Daniels (Sonic Software), Doug Davis
(IBM), John Dinger (IBM), Don Ferguson (IBM), Jeff Frey (IBM), David Hull (Tibco),
Andreas Koeppel (SAP), Heather Kreger (IBM), Kevin Liu (SAP),Tom Maguire (IBM),
Susan Malaika (IBM), David Martin (IBM), Bryan Murray (HP), Martin Nally (IBM),
Jeff Nick (IBM), Claus von Riegen (SAP), Rick Rineholt (IBM), John Rofrano (IBM),
Eugène Sindambiwe (SAP), Jay Unger (IBM), Mark Weitzel (IBM), Dan Wolfson
(IBM).

14 References
[WS-Base Notification]

ftp://www6.software.ibm.com/software/developer/library/ws-notification/WS-
BaseN.pdf

[WS-Notification Whitepaper]

http://www-106.ibm.com/developerworks/library/ws-pubsub/WS-PubSub.pdf

[WS-Security]

http://www.oasis-open.org/committees/download.php/5531/oasis-200401-wss-
soap-message-security-1.0.pdf

[XML-Infoset]
http://www.w3.org/TR/xml-infoset/

[XML]

http://www.w3.org/TR/REC-xml

[XPATH]
http://www.w3.org/TR/xpath

WS-Topics 19

Appendix I – XML Schema
The XML types and elements used in WS-Topics are defined in the following XML
Schema
<?xml version="1.0" encoding="UTF-8"?>
<!--
 Legal Disclaimer

 Copyright Notice

 (c) Copyright Akamai Technologies,
 Computer Associates International, Inc., Fujitsu Limited,
 Hewlett-Packard Development Company,
 International Business Machines Corporation, SAP AG,
 Sonic Software Corporation, Tibco Software Inc. and
 The University of Chicago 2003, 2004 All rights reserved.

-->

<xsd:schema
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:wsa="http://schemas.xmlsoap.org/ws/2003/03/addressing"
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2002/12/policy"
 xmlns:wsnt=
 "http://www.ibm.com/xmlns/stdwip/web-services/WS-BaseNotification"
xmlns:wstop=
 "http://www.ibm.com/xmlns/stdwip/web-services/WS-Topics"
 xmlns:wsrp=
 "http://www.ibm.com/xmlns/stdwip/web-services/WS-
ResourceProperties"
 targetNamespace=
 "http://www.ibm.com/xmlns/stdwip/web-services/WS-Topics"
 elementFormDefault="qualified" attributeFormDefault="unqualified">

<!-- ======================== Imports ============================ -->

 <xsd:import namespace=
 "http://www.ibm.com/xmlns/stdwip/web-services/WS-
ResourceProperties"
 schemaLocation=
 "http://www-106.ibm.com/developerworks/webservices/library/ws-
resource/WS-ResourceProperties.xsd"
 />
 <xsd:import namespace=
 "http://www.ibm.com/xmlns/stdwip/web-services/WS-BaseNotification"
 schemaLocation=
 "http://www-106.ibm.com/developerworks/webservices/library/ws-
resource/WS-BaseNotification.xsd"
 />

<!-- =============== utility type definitions ==================== -->
 <xsd:complexType name="Documentation" mixed="true">
 <xsd:sequence>

WS-Topics 20

 <xsd:any processContents="lax" minOccurs="0"
 maxOccurs="unbounded" namespace="##any"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="ExtensibleDocumented" abstract="true"
 mixed="false">
 <xsd:sequence>
 <xsd:element name="documentation" type="wstop:Documentation"
 minOccurs="0" />
 </xsd:sequence>
 <xsd:anyAttribute namespace="##other" processContents="lax" />
 </xsd:complexType>

<!-- ================== Topic-Space Related ====================== -->
 <xsd:complexType name="TopicSpaceType">
 <xsd:complexContent>
 <xsd:extension base="wstop:ExtensibleDocumented">
 <xsd:sequence>
 <xsd:element name="Topic" type="wstop:TopicType"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:any namespace="##other"
 minOccurs="0" maxOccurs="unbounded"
 processContents="lax"/>
 </xsd:sequence>
 <xsd:attribute name="name" type="xsd:NCName"/>
 <xsd:attribute name="targetNamespace" type="xsd:anyURI"
 use="required"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:element name="TopicSpace" type="wstop:TopicSpaceType">
 <xsd:unique name="rootTopicUniqueness">
 <xsd:selector xpath="wstop:Topic"/>
 <xsd:field xpath="@name"/>
 </xsd:unique>
 </xsd:element>

<!-- ===================== Topic Related ========================= -->

 <xsd:group name="NonAliasTopicDefinition">
 <xsd:sequence>
 <xsd:element name="MessagePattern"
 type="wsrp:QueryExpressionType"
 minOccurs="0" maxOccurs="1" />
 <xsd:element name="Topic" type="wstop:TopicType"
 minOccurs="0" maxOccurs="unbounded">
 <xsd:unique name="childTopicUniqueness">
 <xsd:selector xpath="wstop:topic"/>
 <xsd:field xpath="@name"/>
 </xsd:unique>
 </xsd:element>
 </xsd:sequence>
 </xsd:group>

 <xsd:complexType name="TopicType">

WS-Topics 21

 <xsd:complexContent>
 <xsd:extension base="wstop:ExtensibleDocumented">
 <xsd:sequence>
 <xsd:choice>
 <xsd:element name="AliasRef"
 type="wsnt:TopicExpressionType"
 minOccurs="1" maxOccurs="1" />
 <xsd:group ref="wstop:NonAliasTopicDefinition" />
 </xsd:choice>
 <xsd:any namespace="##other" minOccurs="0"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="name" use="required" type="xsd:NCName"/>
 <xsd:attribute name="messageTypes" default="xsd:any">
 <xsd:simpleType>
 <xsd:list itemType="xsd:QName"/>
 </xsd:simpleType>
 </xsd:attribute>
 <xsd:attribute name="final" type="xsd:boolean"
 default="false"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

<!-- ================ Topic Expression Related =================== -->

 <xsd:simpleType name="FullTopicPathExpression">
 <xsd:restriction base="xsd:token">
 <xsd:annotation>
 <xsd:documentation>
 TopicPathExpression ::= TopicPath ('|' TopicPath)*
 TopicPath ::= RootTopic ChildTopicExpression*
 RootTopic ::= NamespacePrefix? ('//')? (NCName|'*')
 NamespacePrefix ::= NCName ':'
 ChildTopicExpression ::= '/' '/'? (NCName | '*' | ‘.’)

 </xsd:documentation>
 </xsd:annotation>
 <xsd:pattern value= "([\i-[:]][\c-[:]]*:)?(//)?([\i-[:]][\c-
[:]]*|*)((/|//)([\i-[:]][\c-[:]]*|*|[.]))*(\|([\i-[:]][\c-
[:]]*:)?(//)?([\i-[:]][\c-[:]]*|*)((/|//)([\i-[:]][\c-
[:]]*|*|[.]))*)*">
 </xsd:pattern>
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:simpleType name="ConcreteTopicPathExpression">
 <xsd:restriction base="xsd:token">
 <xsd:annotation>
 <xsd:documentation>
 The pattern allows strings matching the following EBNF:
 ConcreteTopicPath ::= RootTopic ChildTopic*
 RootTopic ::= QName
 ChildTopic ::= '/' NCName

 </xsd:documentation>
 </xsd:annotation>

WS-Topics 22

 <xsd:pattern value="(([\i-[:]][\c-[:]]*:)? [\i-[:]][\c-[:]]*)(/
[\i-[:]][\c-[:]]*)*" >
 </xsd:pattern>
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:simpleType name="SimpleTopicExpression">
 <xsd:restriction base="xsd:token">
 <xsd:annotation>
 <xsd:documentation>
 The pattern allows strings matching the following EBNF:
 RootTopic ::= QName

 </xsd:documentation>
 </xsd:annotation>
 <xsd:pattern value="([\i-[:]][\c-[:]]*:)?([\i-[:]][\c-[:]]*)" >
 </xsd:pattern>
 </xsd:restriction>
 </xsd:simpleType>

</xsd:schema>

