
Publish-Subscribe Notification for Web Services 1

Publish-Subscribe Notification

for Web services
Version 1.0

03/05/2004

Authors

Steve Graham, IBM (editor)

Peter Niblett, IBM (editor)

Dave Chappell, Sonic Software

Amy Lewis, TIBCO Software

Nataraj Nagaratnam, IBM

Jay Parikh, Akamai Technologies

Sanjay Patil, SAP AG

Shivajee Samdarshi, TIBCO Software

Igor Sedukhin, Computer Associates International

David Snelling, Fujitsu Laboratories of Europe

Steve Tuecke, Globus / Argonne National Laboratory

William Vambenepe, Hewlett-Packard

Bill Weihl, Akamai Technologies

Copyright Notice

© Copyright Akamai Technologies, Computer Associates International, Inc., Fujitsu
Limited, Hewlett-Packard Development Company, International Business Machines
Corporation, SAP AG, Sonic Software Corporation, Tibco Software Inc. and The
University of Chicago 2003, 2004 All rights reserved.

Permission to copy and display this “Publish-Subscribe Notification for Web services”
Whitepaper (“this Whitepaper”), in any medium without fee or royalty is hereby
granted, provided that you include the following on ALL copies of this Whitepaper, or
portions thereof, that you make:

1. A link or URL to this Whitepaper at this location.

2. This Copyright Notice as shown in this Whitepaper.

THIS WHITEPAPER IS PROVIDED "AS IS". AKAMAI TECHNOLOGIES, COMPUTER
ASSOCIATES INTERNATIONAL, INC, FUJITSU LIMITED, HEWLETT-PACKARD
DEVELOPMENT COMPANY, IBM, SAP AG, SONIC SOFTWARE, THE UNIVERSITY OF
CHICAGO AND TIBCO SOFTWARE (COLLECTIVELY, THE “COMPANIES”) MAKE NO
REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT THE CONTENTS OF THIS
WHITEPAPER ARE SUITABLE FOR ANY PURPOSE; NOR THAT THE IMPLEMENTATION

Publish-Subscribe Notification for Web Services 2

OF SUCH CONTENTS WILL NOT INFRINGE ANY THIRD PARTY PATENTS,
COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

THE COMPANIES WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL,
INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF OR RELATING TO ANY
USE OR DISTRIBUTION OF THIS WHITEPAPER.

The names and trademarks of the Companies may NOT be used in any manner,
including advertising or publicity pertaining to this Whitepaper or its contents without
specific, written prior permission. Title to copyright in this Whitepaper will at all
times remain with the Companies.

No other rights are granted by implication, estoppel or otherwise.

PORTIONS OF THIS MATERIAL WERE PREPARED AS AN ACCOUNT OF WORK
SPONSORED BY IBM CORPORATION AT UNIVERSITY OF CHICAGO'S ARGONNE
NATIONAL LABORATORY. NEITHER THE AUTHORS, NOR THE UNITED STATES
GOVERNMENT OR ANY AGENCY THEREOF, NOR THE UNIVERSITY OF CHICAGO, NOR
IBM, NOR ANY OF THEIR EMPLOYEES OR OFFICERS, NOR ANY OTHER COPYRIGHT
HOLDERS OR CONTRIBUTORS, MAKES ANY WARRANTY, EXPRESS OR IMPLIED, OR
ASSUMES ANY LEGAL LIABILITY OR RESPONSIBILITY FOR THE ACCURACY,
COMPLETENESS, OR USEFULNESS OF ANY INFORMATION, APPARATUS, PRODUCT,
OR PROCESS DISCLOSED, OR REPRESENTS THAT ITS USE WOULD NOT INFRINGE
PRIVATELY OWNED RIGHTS. REFERENCE HEREIN TO ANY SPECIFIC COMMERCIAL
PRODUCT, PROCESS, OR SERVICE BY TRADE NAME, TRADEMARK, MANUFACTURER,
OR OTHERWISE, DOES NOT NECESSARILY CONSTITUTE OR IMPLY ITS
ENDORSEMENT, RECOMMENDATION, OR FAVORING BY IBM, THE UNITED STATES
GOVERNMENT OR ANY AGENCY THEREOF OR ANY OTHER COPYRIGHT HOLDERS OR
CONTRIBUTORS. THE VIEW AND OPINIONS OF AUTHORS EXPRESSED HEREIN DO
NOT NECESSARILY STATE OR REFLECT THOSE OF IBM, THE UNITED STATES
GOVERNMENT OR ANY AGENCY THEREOF, OR THE ENTITY BY WHICH AN AUTHOR
MAY BE EMPLOYED.

This manuscript has been created in part by the University of Chicago as Operator of
Argonne National Laboratory ("Argonne") under Contract No. W-31-109-ENG-38 with
the U.S. Department of Energy. The U.S. Government retains for itself, and others
acting on its behalf, a paid-up, nonexclusive, irrevocable worldwide license in said
article to reproduce, prepare derivative works, distribute copies to the public, and
perform publicly and display publicly, by or on behalf of the Government.

Publish-Subscribe Notification for Web Services 3

Abstract
The Event-driven, or Notification-based, interaction pattern is a commonly used
pattern for inter-object communications. Examples exist in many domains, for
example in publish/subscribe systems provided by Message Oriented Middleware
vendors, or in system and device management domains. This notification pattern is
increasingly being used in a Web services context.

WS-Notification is a family of related white papers and specifications that define a
standard Web services approach to notification using a topic-based publish/subscribe
pattern. It includes: standard message exchanges to be implemented by service
providers that wish to participate in point to point notifications, standard message
exchanges for a notification broker service provider (allowing publication of
messages from entities that are not themselves service providers), operational
requirements expected of service providers and requestors that participate in
notifications, and an XML model that describes topics of subscription. The WS-
Notification family of documents includes: a white paper: Publish-Subscribe
Notification for Web services as well as three normative specifications: WS-
BaseNotification, WS-BrokeredNotification, and WS-Topics.

This document introduces the notification pattern, sets the goals and requirements
for the WS-Notification family of specifications and describes each of the
specifications that make up this family. It also defines a set of terms and concepts
used in the specifications, provides some examples, and includes a discussion of
security considerations.

Status
This whitepaper is an initial draft release and is provided for review and evaluation
only. The Companies hope to solicit your contributions and suggestions in the near
future. The Companies make no warranties or representations regarding the
specification in any manner whatsoever.

Publish-Subscribe Notification for Web Services 4

Table of Contents
1 INTRODUCTION .. 4

1.1 GOALS AND REQUIREMENTS ... 5
1.1.1 Requirements .. 5
1.1.2 Non-Goals... 6

2 OVERVIEW OF THE WS-NOTIFICATION SPECIFICATIONS .. 6
3 TERMINOLOGY AND CONCEPTS... 8
4 EXAMPLE.. 12
5 SECURITY CONSIDERATIONS .. 15

5.1 SECURING THE MESSAGE EXCHANGES.. 15
5.2 SECURING SUBSCRIPTIONS AND NOTIFICATIONS... 17

6 ACKNOWLEDGEMENTS ... 18
7 REFERENCES ... 18

1 Introduction
The Event-driven, or Notification-based, interaction pattern is a commonly used
pattern for inter-object communications. Examples exist in many domains, for
example in publish/subscribe systems provided by Message Oriented Middleware
vendors, or in system and device management domains. This notification pattern is
increasingly being used in a Web services context.

In the notification pattern a Web service, or other entity, disseminates information to
a set of other Web services, without having to have prior knowledge of these other
Web services. Characteristics of this pattern include:

• The Web services that wish to consume information (which we call
NotificationConsumers) are registered dynamically with the Web service that is
capable of distributing information. As part of this registration process the
NotificationConsumers may provide some indication of the nature of the
information that they wish to receive.

• The distributing Web service disseminates information by sending one-way
messages to the NotificationConsumers that are registered to receive the
information. It is possible that more than one NotificationConsumer is registered
to consume the same information. In such cases, each NotificationConsumer that
is registered receives a separate copy of the information.

• The distributing Web service may send any number of messages to each
registered NotificationConsumer; it is not limited to sending just a single
message. Note also that a given NotificationConsumer may receive zero or more
NotificationMessages throughout the time during which it is registered.

WS-Notification standardizes the roles, concepts, message exchanges, WSDL 1.1 and
XML Schema renderings required to express the pattern. The benefits of
standardization include:

Publish-Subscribe Notification for Web Services 5

• Interoperation between NotificationProducers and
NotificationConsumers. WS-Notification specifies a standard set of message
exchanges that define the roles of NotificationProducer and NotificationConsumer.
Any services that implement these message exchanges will be able to exchange
notifications, subject to there being a common transport binding.

• Interoperation between middleware providers. The WS-Notification
interfaces have been defined in a way which allows the implementation to be
delegated to a middleware provider. This specification allows different
middleware providers to interoperate.

• Standardized mechanism to develop Topic taxonomies. Interoperation is
facilitated by having a standard way to name and describe Topics that is not tied
to a particular implementation.

• Standardized concepts and terminology. A common set of concepts and
terms simplifies the job of the application developer as well as aiding
interoperation.

1.1 Goals and Requirements
The goals of WS-Notification are to standardize the roles, terminology, concepts,
message exchanges and the WSDL needed to express the notification pattern, and to
provide a language to describe Topics.

1.1.1 Requirements
In meeting these goals, the WS-Notification specifications must explicitly address the
following requirements:

• Must support resource-constrained devices. The specifications must be
factored in a way that allows resource-constrained devices to participate in the
Notification pattern. Such devices will be able to send information to, and receive
information from Web services, without having to implement all the features of
the specifications.

• Must support both direct and brokered Notification: The specifications must
define a NotificationBroker role. A NotificationBroker is a Web service that acts as
a intermediary between the producer of the information and the
NotificationConsumers that receive it. The specifications must allow a given
NotificationProducer or NotificationConsumer to participate in both brokered and
non-brokered configurations.

• Must permit transformation and aggregation of Topics: It must be possible
to construct configurations (using intermediary brokers) where the Topic
subscribed to by the NotificationConsumer differs from the Topic published to by
the NotificationProducer, yet NotificationMessages from the NotificationProducer
are routed to the NotificationConsumer by a broker that is acting according to
administratively-defined rules.

• Must provide runtime metadata: There must be a mechanism that lets a
potential Subscriber discover what elements available for subscription are
provided by a NotificationProducer, and in what formats the subscription for
notification can be made.

In addition, the WS-Notification specifications must allow for the following
requirements to be met

Publish-Subscribe Notification for Web Services 6

• WS-Notification must be independent of binding-level details: Transport
protocol details must be orthogonal to the subscription and the delivery of the
notifications, so that the specification can be used over a variety of different
transports.

• Must allow for Message Oriented Middleware implementations. The design
of the WS-Notification specifications must allow a service that is acting as a
NotificationProducer to delegate its implementation of WS-Notification semantics
to a Message Oriented Middleware provider.

• Must allow for federation of brokers. It must be possible to build
configurations with multiple intermediary broker services in a dynamic fashion.
The specifications must allow for a variety of broker topology usage patterns.
Among other things, these allow for greater scalability and permit sharing of
administrative workload.

• Relationship to other WS-* specifications: WS-Notification must be
composable with other Web services specifications, in particular WS-Security,
WS-Policy, WS-Federation, WS-Addressing, WS-Coordination, WS-
ResourceProperties, WS-ResourceLifetime, WS-ReliableMessaging [WS-
ReliableMessaging] and the WS-Resource framework [State Paper].

1.1.2 Non-Goals
The following topics are outside the scope of these specifications:

• Defining the format of notification payloads: The data carried in
NotificationMessage payloads is application-domain specific, and WS-Notification
does not prescribe any particular format for this data.

• Defining any Events or NotificationMessages. The specifications do not
define any “standard” or “built-in” notification situations, events or messages.

• Defining the mapping between Situations and NotificationMessages. The
specifications do not define the circumstances under which a potential producer
of information should decide if and when it should actually notify the registered
NotificionConsumers. However they do define how it performs the notification
once it has decided to do so.

• Defining the means by which NotificationProducers and
NotificationBrokers are discovered by subscribers It is beyond the scope of
this specification to define the mechanisms for runtime discovery of
NotificationProducers and NotificationBrokers.

• Defining the specific policy language to be used to govern specifics of the
notification message exchange between the NotificationProducer and the
NotificationConsumer. The current family of specifications does not define this
policy language. It is expected that this will be added in the future as a further
specification.

2 Overview of the WS-Notification
Specifications

WS-Notification is packaged as a family of related specification documents. This
follows the standard Web services practice of having small composable
specifications, and makes the functional layering of the total specification more
apparent to readers. This approach also provides a flexible framework so that, over

Publish-Subscribe Notification for Web Services 7

time, additional functionality can be added without requiring a revision of existing
specifications.

The term WS-Notification is used to refer to this family of specifications as a whole.
This family consists of the following documents:

Publish-Subscribe Notification for Web Services (this document)

This document introduces the Notification pattern, sets the goals and
requirements for the WS-Notification family of specifications and describes each
of the specifications that make up this family. It also defines a set of terms and
concepts used in the specifications, provides some examples, and includes a
discussion of security considerations. This document should be read before
reading the other WS-Notification specifications.

Web Services Base Notification

The WS-Base Notification specification defines the Web services interfaces for
NotificationProducers and NotificationConsumers. It includes standard message
exchanges to be implemented by service providers that wish to act in these roles,
along with operational requirements expected of them. This is the base document
on which the other WS-Notification specification documents depend. An
implementer interested just in direct, point to point, notification need only read
the WS-Base Notification specification, together with the Publish-Subscribe
Notification for Web Services white paper.

Web Services Topics

The WS-Topics specification defines a mechanism to organize and categorize
items of interest for subscription known as “topics”. These are used in
conjunction with the notification mechanisms defined in WS-Base Notification.
WS-Topics defines three topic expression dialects that can be used as
subscription expressions in subscribe request messages and other parts of the
WS-Notification system. It further specifies an XML model for describing
metadata associated with topics. The WS-Topics specification should be read in
conjunction with the WS-Base Notification specification and the Publish-Subscribe
Notification for Web Services white paper.

Web Services Brokered Notification

The WS-Brokered Notification specification defines the Web services interface for
the NotificationBroker. A NotificationBroker is an intermediary which, among
other things, allows publication of messages from entities that are not
themselves service providers. It includes standard message exchanges to be
implemented by NotificationBroker service providers along with operational
requirements expected of service providers and requestors that participate in
brokered notifications. This work relies upon WS-Base Notification and WS-
Topics, as well as the Publish-Subscribe Notification for Web Services document.

Wherever possible, WS-Notification composes with other WS-* specifications, in
order to avoid duplication of function. In particular it leverages the work defined in
the WS-Resource [State Paper] family of specifications. A WS-Resource is a term
used to describe the relationship between a Web service and a stateful resource by
defining a so-called implied resource pattern. This pattern standardizes the way in
which a Web service message contains an identifier of the stateful resource to be

Publish-Subscribe Notification for Web Services 8

used in the execution the message. Several aspects of WS-Notification, particularly
Subscriptions, utilize this concept.

WS-Notification also uses WS-ResourceProperties [WS-ResourceProperties]. WS-
ResourceProperties defines a mechanism by which a WSDL portType can be
associated with an XML element that describes the data associated with a resource.
This specification includes standard message exchanges associated with reading and
writing a resource’s data.

WS-Notification uses WS-ResourceLifetime [WS-ResourceLifetime] to provide direct,
immediate destruction of resources as well as scheduled destruction of resources,
based on a leasing or time-based model.

3 Terminology and Concepts
The following definitions outline the terminology and usage in the WS-Notification
family of specifications.

Situation:

• A Situation is some occurrence within a Web service or its environment of
interest to third parties.

• A Situation could be a change of the internal state of a Web service or an
associated resource or could be environmental, such as a timer event. It
could also be an external event, such as a piece of news that has been
supplied by a news-feed service.

• WS-Notification does not specify what a Situation is or is not, nor does it
define the relationship between a Situation and the NotificationMessage(s)
that are used to describe it.

NotificationMessage:

• A NotificationMessage is an artifact of a Situation containing information
about that Situation that some entity wishes to communicate to other
entities.

• A NotificationMessage is represented as an XML element with a Namespace
qualified QName and a type defined using XML Schema.

• A typical usage pattern is to define a single NotificationMessage type (to be
precise, its defining XML element) for each kind of Situation, containing
information pertinent to that kind of Situation; in this case one can think of a
NotificationMessage instance as in some sense being (or at least
representing) the Situation.

• A designer could choose to associate several different NotificationMessage
types with a Situation, for example, describing different aspects of the
Situation, destined for different target recipients, etc. Conversely it is possible
that several essentially different Situations give rise to NotificationMessages
of the same type.

Notification:

• A Notification is the act of transmitting a NotificationMessage to an interested
party.

NotificationProducer:

Publish-Subscribe Notification for Web Services 9

• A NotificationProducer is a Web service that implements the message
exchanges associated with the NotificationProducer interface and supports
one or more Topics.

• A NotificationProducer is capable of distributing NotificationMessages. It
maintains a list of Subscription resources and when it has a
NotificationMessage to distribute; it matches the NotificationMessage (and its
associated Topic) against the interest registered in each Subscription in its
list. If it identifies a match it issues a Notification to the NotificationConsumer
associated with that Subscription.

• A Web Service that implements the message exchanges associated with
NotificationProducer can be a Publisher (i.e. it creates the
NotificationMessages itself) or it can be a NotificationBroker, distributing
NotificationMessages that were produced by a separate Publisher entity.

• It is the factory for Subscription resources.

NotificationConsumer:

• A NotificationConsumer is a Web Service that receives NotificationMessages
from a NotificationProducer.

• A NotificationConsumer may implement the generic Notify message
exchange, or it may be able to process one or more domain-specific
NotificationMessage types.

Subscription:

• A Subscription is a WS-Resource, following the implied resource pattern
defined in [State Paper]. A Subscription represents the relationship between a
NotificationConsumer, NotificationProducer, Topic and various other optional
filter expressions, policies and context information.

• A Subscription resource is created when a Subscriber sends the Subscribe
request message to a NotificationProducer.

• Subscription resources are manipulated by messages sent to the
SubscriptionManager Web service associated with the Subscription resource,
using the implied resource pattern.

SubscriptionManager

• A SubscriptionManager is a Web service that implements message exchanges
associated with the SubscriptionManager interface.

• A SubscriptionManager provides services that allow a service requestor to
query and manipulate Subscription resources that it manages. A
SubscriptionManager is a Web service that participates in the implied resource
pattern.

• A SubscriptionManager is subordinate to the NotificationProducer, and MAY be
implemented by the NotificationProducer service provider. However WS-
Notification permits it to be implemented by a separate service provider,
should an implementer so desire.

Subscriber:

• A Subscriber is an entity (often a Web service) that acts as a service
requestor, sending the subscribe request message to a NotificationProducer.

Publish-Subscribe Notification for Web Services 10

• Note that a Subscriber may be a different entity than the
NotificationConsumer that actually receives the NotificationMessages.

Topic:

• A Topic is the concept used to categorize Notifications and their related
NotificationMessage schemas.

• Topics are used as part of the matching process that determines which (if
any) subscribing NotificationConsumers should receive a NotificationMessage.

• Every NotificationMessage instance generated by a Publisher is associated
with a Topic. The relation between Situation and Topic is not specified by WS-
Notification but MAY be specified by the designer of the TopicSpace.

• A synonym in some other publish/subscribe models is subject.

Topic Space:

• A forest of Topic Trees grouped together into the same namespace for
administrative purposes.

Topic Tree:

• A hierarchical grouping of Topics.

NotificationBroker:

• A NotificationBroker is an intermediary Web service that decouples
NotificationConsumers from Publishers.

• It implements both the NotificationProducer and NotificationConsumer
interfaces.

• Because a NotificationBroker is an intermediary, it provides additional
capabilities to the basic NotificationProducer interface:

o It can relieve a Publisher from having to implement message
exchanges associated with NotificationProducer; the NotificationBroker
takes on the duties of a SubscriptionManager (managing subscriptions)
and NotificationProducer (distributing NotificationMessages) on behalf
of the Publisher.

o It can reduce the number of inter-service connections and references,
if there are many Publishers and many NotificationConsumers

o It can act as a finder service. Potential Publishers and Subscribers can
in effect find each other by utilizing a common NotificationBroker.

o It can provide anonymous Notification, so that the Publishers and
NotificationConsumers need not be aware of each others identity.

• An implementation of a NotificationBroker may provide additional added-value
function that is beyond the scope of this specification, for example logging
NotificationMessages, or transforming Topics and/or NotificationMessage
content. Additional function provided by a NotificationBroker can apply to all
Publishers that utilize it.

Publisher:

• A Publisher is an entity that creates NotificationMessages, based upon
Situation(s) that it is capable of detecting and translating into
NotificationMessage artifacts. It does not need to be a Web service.

Publish-Subscribe Notification for Web Services 11

• A Publisher MAY be a Web service that implements the message exchanges
associated with the NotificationProducer interface, in which case it also
distributes the NotificationMessages to the relevant NotificationConsumers.

• If a Publisher does not implement the message exchanges associated with
NotificationProducer, then it is not required to support the Subscribe request
message and does not have to maintain knowledge of the
NotificationConsumers that are subscribed to it; a NotificationBroker takes
care of this on its behalf.

PublisherRegistration:

• A PublisherRegistration is a resource, following the implied resource pattern
identified in WS-Resource. A PublisherRegistration represents the relationship
between a Publisher and a NotificationBroker, in particular which topic(s) the
publisher is permitted to publish to.

• A PublisherRegistration resource is created when a Publisher sends the
RegisterPublisher request message to a NotificationBroker.

• PublisherRegistration resources are manipulated by messages sent to a
PublisherRegistrationManager Web service.

PublisherRegistrationManager:

• A PublisherRegistrationManager is a Web service that implements message
exchanges associated with the PublisherRegistrationManager interface.

• A PublisherRegistrationManager provides services that allow a service
requestor to query and manipulate PublisherRegistration resources that it
manages. A PublisherRegistrationManager is a Web service that participates
in the implied resource pattern.

• A PublisherRegistrationManager is subordinate to the NotificationBroker, and
MAY be implemented by the NotificationBroker service provider. However WS-
Notification permits it to be implemented by a separate service provider,
should an implementer so desire.

Demand-Based Publisher:

• Some Publishers may be interested in knowing whether they have any
Subscribers or not, since producing a NotificationMessage may be a costly
process. Such Publishers can register with the NotificationBroker as a
Demand-Based Publisher.

• Demand-Based Publishers implement message exchanges associated with the
NotificationProducer interface.

• The NotificationBroker subscribes to the Demand-Based Publisher. When the
NotificationBroker knows that there are no Subscribers for the
NotificationMessages from a Demand-Based Publisher it pauses its
Subscription with that Publisher; when it knows that there are some
Subscribers, it resumes the Subscription.

• This way the Demand-Based Publisher doesn’t need to produce messages
when there are no Subscribers, however a Demand-Based Publisher is only
required to support a single Subscriber on any given Topic, and so can
delegate the management of multiple Subscribers, delivery to multiple
NotificationConsumers and other related issues (for example security) to the
NotificationBroker.

Publish-Subscribe Notification for Web Services 12

The following terms, defined in the WS-Resource Framework family of specifications
[State Paper], are used in WS-Notification. Their definitions are included here for
ease of reference.

WS-Resource:

• A Web service having an association with a stateful resource, where the
stateful resource is defined by a resource properties document type and the
association is expressed by annotating a WSDL portType with the type
definition of the resource properties document.

Implied Resource Pattern:
• The way WS-Addressing MUST be used to designate the stateful resource

component of the WS-Resource to be used in the execution of message
exchanges.

• An EndpointReference that follows the implied resource pattern may include a
ReferenceProperties child element that identifies the stateful resource
component of the WS-Resource to be used in the execution of all message
exchanges performed using this EndpointReference.

• A message that follows the implied resource pattern MUST be sent to a Web
service referred to by an EndpointReference that follows the implied resource
pattern, and MUST conform to the WS-Addressing requirements on that
message including adding the ReferenceProperties information, if present,
from that EndpointReference to the message.

• A Web service that follows the implied resource pattern MAY use the
ReferenceProperties information from a message that follows the implied
resource pattern in order to identify the stateful resource to be used in the
execution requested by that message.

WS-Resource Qualified Endpoint Reference:

• An Endpoint Reference used to refer to a WS-Resource composed of a Web
service and a stateful resource.

• A stateful resource identifier MAY be contained within the ReferenceProperties
element of the Endpoint Reference.

• The address of the Web service associated with the WS-Resource MUST be
contained in the Address element of the Endpoint Reference.

4 Example
Consider the following depiction:

Publish-Subscribe Notification for Web Services 13

The figure above shows a Web service (a simple Web application server manager, for
example) that is a NotificationProducer producing two kinds of notification:
“goingOffLine” and “systemErrorDetected”.

The service requestor (A), playing the role of subscriber, registers interest in the
receiving notifications of a given kind, by sending the Subscribe request message to
the NotificationProducer Web service, as depicted by arrows on the above figure.

When certain Situations happen within the operating environment of the
NotificationProducer service, one or more NotificationMessages are generated on one
or more of its Topics. NotificationMessages are sent to the interested parties
(NotificationConsumers) to notify them of the Situation.

The following diagram illustrates a possible sequence of operations:

A

B

Subscriber

I send
notifications on:
- “goingOffLine”
- “SystemError”

Subscribe “A” to
“SystemError”

notifications only for
Severity = “1”

Subscribe “B” to
“goingOffLine”

notifications

Subscriber NotificationProducer NotificationConsumer

Subscribe

wsa:EndpointReference

Notify

Publish-Subscribe Notification for Web Services 14

The Subscriber sends a Subscribe request message to the NotificationProducer,
indicating the address of the NotificationConsumer, the kinds of notification for the
Subscription, and other related Subscription information. In response to this
message, the NotificationProducer creates a Subscription resource and returns an
EndpointReference [WS-Addressing] to this Subscription WS-Resource.

At some later time, the NotificationProducer issues a Notification that matches the
Subscription. The NotificationProducer uses the Notify message to deliver this to the
NotificationConsumer, or, if indicated on the Subscription, sends the
NotificationMessage as an application-defined message, without using the generic
Notify message exchange.

Some notification patterns involve an intermediary, or broker. This arrangement is
depicted in the following figure:

In the above figure, Subscriber “A” subscribes the NotificationConsumer named “B”
to receive “SystemError” notifications provided by the NotificationBroker. Other
entities (for example, publisher X) are allowed to publish SystemError notifications
(in this example publisher X has published msg1). Some time later, another entity
(publisher Y) publishes msg2 to the NotificationBroker as a “SystemError”
notification. The NotificationBroker delivers both msg1 and msg2 to “B” as they both
match the subscription that “A” established for “B”.

msg1

A

B

Subscriber
I send
notifications on:
-
“goingOffLine”
- “SystemError”

Subscribe “B” to
receive “SystemError”

notifications X

Publisher

Consumer

Broker
Y

Publisher

Publish “msg1” to
“SystemError”

Publish “msg2” to
“SystemError” msg2

Publish-Subscribe Notification for Web Services 15

The interactions between the Subscriber, NotificationBroker and one of the Publishers
are shown in the following interaction diagram:

In the brokered case, the sequence of message exchanges between Subscriber and
the NotificationBroker is the same as the sequence of message exchanges between
Subscriber and NotificationProducer in the non-brokered case.

Instead of interacting directly with the ultimate NotificationConsumers, Publishers
interact with the NotificationBroker using a sequence of message exchanges
supported by the NotificationBroker. The Publisher publishes a NotificationMessage to
the NotificationBroker, using the Notify message. At some point subsequent to this
publication, the NotificationBroker delivers the NotificationMessages to any
NotificationConsumer identified by Subscriptions which match the publication.

Note: the Notify message exchange can be used for two purposes: to publish a
NotificationMessage to the NotificationBroker and to deliver a NotificationMessage to
a NotificationConsumer. This allows chaining of NotificationBrokers and anonymous
intermediation of NoificationBrokers between NotificationProducers (publishers) and
NotificationConsumers.

5 Security Considerations
This section deals with the security aspects of WS-Notification. It deals with (a)
securing the standard message exchanges defined in this specification, and (b)
authorization and denial of service considerations.

5.1 Securing the Message Exchanges
As defined in WS-Notification, Subscription messages are exchanged between
Subscribers and NotificationBrokers; NotificationMessages are exchanged between
Publishers and NotificationBrokers, and NotificationBrokers and
NotificationConsumers. It is important to ensure NotificationMessages cannot be
tampered with during delivery to NotificationConsumers and to ensure confidentiality

Subscriber NotificationBroker NotificationConsumerPublisher

Subscribe

wsa:EndpointReference

Notify

Notify

Publish-Subscribe Notification for Web Services 16

of sensitive NotificationMessages. Therefore, when these messages are exchanged
between these services, it is strongly RECOMMENDED that the communication
between services be secured using the mechanisms described in WS-Security [WS-
Security]. In order to properly secure messages, the body and all relevant headers
need to be included in the digital signature so as to prove the integrity of the
message. In addition the reference properties within an EndpointReference, passed
in a Subscribe or in other request messages, MAY be encrypted to ensure their
privacy. In the event that a requestor communicates frequently with a
NotificationConsumer Web service, for example, sending the Notify message, it is
RECOMMENDED that a security context be established using the mechanisms
described in WS-Trust [WS-Trust] and WS-SecureConversation [WS-
SecureConversation]allowing for potentially more efficient means of authentication.

It is common for communication between requestors and Web service associated
with a resource through the implied resource pattern to exchange multiple
messages. As a result, the usage profile is such that it is susceptible to key attacks.
For this reason it is strongly RECOMMENDED that the keys used to secure the
channel be changed frequently. This "re-keying" can be effected a number of ways.
The following list outlines four common techniques:

• Attaching a nonce to each message and using it in a derived key function with
the shared secret

• Using a derived key sequence and switch "generations"

• Closing and re-establishing a security context

• Exchanging new secrets between the parties

It should be noted that the mechanisms listed above are independent of the security
context token (SCT) and secret returned when subscribed the first time. That is, the
keys used to secure the channel during notifications may be independent of the key
used to prove the right to subscribe with a NotificationProducer.

The security context MAY be re-established using the mechanisms described in WS-
Trust and WS-SecureConversation. Similarly, secrets can be exchanged using the
mechanisms described in WS-Trust. Note, however, that the current shared secret
SHOULD NOT be used to encrypt the new shared secret. Derived keys, the preferred
solution from this list, can be specified using the mechanisms described in WS-
SecureConversation.

The following list summarizes common classes of attacks that apply to this protocol
and identifies the mechanism to prevent/mitigate the attacks:

• Message alteration – Alteration is prevented by including signatures of the
message information using WS-Security.

• Message disclosure – Confidentiality is preserved by encrypting sensitive data
using WS-Security.

• Key integrity – Key integrity is maintained by using the strongest algorithms
possible (by comparing secured policies – see WS-Policy [WS-Policy] and WS-
SecurityPolicy).

• Authentication – Authentication is established using the mechanisms described
in WS-Security and WS-Trust. Each message is authenticated using the
mechanisms described in WS-Security.

Publish-Subscribe Notification for Web Services 17

• Accountability – Accountability is a function of the type of and string of the key
and algorithms being used. In many cases, a strong symmetric key provides
sufficient accountability. However, in some environments, strong PKI signatures
are required.

• Availability – Many services are subject to a variety of availability attacks.
Replay is a common attack and it is RECOMMENDED that this be addressed as
described in the next bullet. Other attacks, such as network-level denial of
service attacks are harder to avoid and are outside the scope of this specification.
That said, care should be taken to ensure that minimal processing be performed
prior to any authenticating sequences.

• Replay – Messages may be replayed for a variety of reasons. To detect and
eliminate this attack, mechanisms should be used to identify replayed messages
such as the timestamp/nonce outlined in WS-Security and the sequences outlined
in WS-ReliableMessaging.

5.2 Securing Subscriptions and Notifications
Given WS-Notification provides mechanisms for publishing, and subscribing to topics,
security policies should be established such that

1. only authorized principals can subscribe for Notifications

2. only authorized principals can modify or delete Subscriptions

3. only authorized principals can modify or delete PublisherRegistrations (see
[WS-BrokeredNotification]).

4. only authorized principals can publish NotificationMessages

5. only authorized principals can create new child Topics (where the TopicSpace
definition permits this) (see [WS-Topics]).

It is recommended that the authorization policies be specified at the granularity of
the Topic. It should be noted that even though Subscriptions may be done by
authorized principals, the NotificationMessages may be delivered to
NotificationConsumers whose identity may be different from the Subscriber. Message
protection policies as outlined in the previous section can be used to ensure that
sensitive NotificationMessages are not delivered to malicious endpoints. For example,
a key may need to be specified or generated during the process of Subscription, so
that the NotificationMessages can be encrypted using the key to ensure
confidentiality of the messages. The mechanism by which the key is specified is
governed by the Subscription policy.

Given that WS-Notification uses WS-ResourceProperties, the security considerations
outlined in WS-ResourceProperties need to be taken into account. Authorization
policies for those Resource Properties should be put in place so that the implications
of providing the state information (through GetResourceProperty request messages)
or through notification of state change and modification of the resource properties
(through SetResourceProperty request messages), are taken into account.

This specification provides a mechanism by which Subscribers can specify a
subscription policy. Such a policy may contain security policy about protecting the
message exchanges resulting from the Subscription. Security policy for Subscription
message exchanges needs to take this into consideration so that the Subscription
policies are protected. Also, given this policy may be contained in the resource

Publish-Subscribe Notification for Web Services 18

properties of the subscription maintained by the SubscriptionManager, the resource
properties must be appropriately secured.

WS-Notification uses WS-ResourceLifetime to manage the lifetime of subscriptions
and PublisherRegistrations. Authorization policies should be defined so that the
implications, of destroying a resource either through explicit requests or by setting
TerminationTime are considered. Therefore, the security considerations outlined in
WS-ResourceLifetime need to be taken into account in order to secure Subscriptions
and PublisherRegistrations appropriately.

6 Acknowledgements
This specification has been developed as a result of joint work with many individuals
and teams. The authors wish to acknowledge the contributions from many people,
including:

Tim Banks (IBM), Nick Butler (IBM), Glen Daniels (Sonic Software), Doug Davis
(IBM), John Dinger (IBM), Don Ferguson (IBM), Jeff Frey (IBM), David Hull (Tibco),
Andreas Koeppel (SAP), Heather Kreger (IBM), Kevin Liu (SAP), Tom Maguire (IBM),
Susan Malaika (IBM), David Martin (IBM), Bryan Murray (HP), Martin Nally (IBM),
Jeff Nick (IBM), Claus von Riegen (SAP), Rick Rineholt (IBM), John Rofrano (IBM),
Eugène Sindambiwe (SAP), Jay Unger (IBM), Mark Weitzel (IBM), Dan Wolfson
(IBM).

7 References
[WS-Addressing]

http://www.ibm.com/developerworks/webservices/library/ws-add/

[State Paper]

http://www-106.ibm.com/developerworks/webservices/library/ws-resource/ws-
modelingresources.pdf

[WS-BaseNotification]

ftp://www6.software.ibm.com/software/developer/library/ws-notification/WS-
BaseN.pdf

[WS-BrokeredNotification]

ftp://www6.software.ibm.com/software/developer/library/ws-notification/WS-
BrokeredN.pdf

[WS-Policy]

http://www-106.ibm.com/developerworks/library/ws-polfram/

[WS-ReliableMessaging]

http://www-106.ibm.com/developerworks/webservices/library/ws-rm/

[WS-ResourceLifetime]

http://www-106.ibm.com/developerworks/webservices/library/ws-resource/ws-
resourcelifetime.pdf

[WS-ResourceProperties]

http://www-106.ibm.com/developerworks/webservices/library/ws-resource/ws-
resourceproperties.pdf

[WS-SecureConversation]

Publish-Subscribe Notification for Web Services 19

http://www-106.ibm.com/developerworks/library/ws-secon/

[WS-Security]

http://www.oasis-open.org/committees/download.php/5531/oasis-200401-wss-
soap-message-security-1.0.pdf

[WS-Topics]

ftp://www6.software.ibm.com/software/developer/library/ws-notification/WS-
Topics.pdf

[WS-Trust]

http://www-106.ibm.com/developerworks/library/ws-trust/

